🛠️ 在 Windows WSL 上部署 Ollama 和大语言模型:从镜像冗余问题看 Docker 最佳实践
⭐ 引言
随着大语言模型(LLM)和人工智能技术的迅猛发展,开发者们越来越多地尝试在本地环境中部署模型进行实验。
但部署过程中常常会遇到 网络限制、资源冲突 和 工具复杂性 等问题。本文聚焦于实际操作中遇到的 Docker 镜像冗余问题,并总结了从问题发现到解决的完整流程。同时,结合 Ollama、Open WebUI 和 Qwen 的联系,分享一套适用于本地 LLM 部署的 Docker 最佳实践工作流,帮助开发者高效部署和管理模型。
🔍 Ollama、Open WebUI 和 Qwen 的联系
📌 Ollama
- 定位:本地大语言模型推理工具,支持 RESTful API。
- 功能:
• 提供 LLM 模型的高效推理能力。
• 通过命令行工具快速部署 RESTful 服务。 - 优势:
• 轻量化:支持 CPU 和 GPU 环境。
• 离线能力:无需联网即可本地运行模型。
📌 Open WebUI
- 定位:基于浏览器的交互界面,方便与模型交互。
- 功能:
• 提供文档导入和 RAG(检索增强生成)支持。
• 可视化界面适合复杂任务的操作。 - 优势:
• 用户友好:降低命令行门槛。
• 高扩展性:与 Ollama 的后端无缝结合。
📌 Qwen
- 定位:阿里巴巴推出的大语言模型,支持中英文双语。
- 功能:
• 文本生成、理解和推理能力强大。
• 可在 Ollama 或 Hugging Face 环境中部署。 - 优势:
• 任务灵活:适用于对话生成、知识问答等。
• 开放性强:支持自定义训练与开源应用。
📎 三者的协作
- Ollama 提供模型推理服务,并通过 API 接口供其他工具调用。
- Open WebUI 作为用户界面,与 Ollama 的 API 交互。
- Qwen 是核心模型,为用户提供实际生成能力。
🛠️ 镜像冗余问题:从发现到解决的完整分析
📌 问题背景
在通过 Docker 部署 Open WebUI 时,始终无法正常启动容器,日志显示 网络无法访问 Hugging Face。但实际根源是 Docker 镜像冗余 导致的容器冲突。
现象:
1. 多个停止状态的容器残留。
2. 重复镜像未清理,导致新容器启动失败。
3. 错误日志显示:
Error response from daemon: conflict: unable to delete <image_id> - image is being used by stopped container.
📋 问题排查与解决
1. 检查运行状态的容器ÿ