在 Windows WSL 上部署 Ollama 和大语言模型:从镜像冗余问题看 Docker 最佳实践20241208

🛠️ 在 Windows WSL 上部署 Ollama 和大语言模型:从镜像冗余问题看 Docker 最佳实践

⭐ 引言

随着大语言模型(LLM)和人工智能技术的迅猛发展,开发者们越来越多地尝试在本地环境中部署模型进行实验。
但部署过程中常常会遇到 网络限制、资源冲突 和 工具复杂性 等问题。本文聚焦于实际操作中遇到的 Docker 镜像冗余问题,并总结了从问题发现到解决的完整流程。同时,结合 Ollama、Open WebUI 和 Qwen 的联系,分享一套适用于本地 LLM 部署的 Docker 最佳实践工作流,帮助开发者高效部署和管理模型。
在这里插入图片描述

🔍 Ollama、Open WebUI 和 Qwen 的联系

📌 Ollama

  • 定位:本地大语言模型推理工具,支持 RESTful API。
  • 功能:
    • 提供 LLM 模型的高效推理能力。
    • 通过命令行工具快速部署 RESTful 服务。
  • 优势:
    • 轻量化:支持 CPU 和 GPU 环境。
    • 离线能力:无需联网即可本地运行模型。

📌 Open WebUI

  • 定位:基于浏览器的交互界面,方便与模型交互。
  • 功能:
    • 提供文档导入和 RAG(检索增强生成)支持。
    • 可视化界面适合复杂任务的操作。
  • 优势:
    • 用户友好:降低命令行门槛。
    • 高扩展性:与 Ollama 的后端无缝结合。

📌 Qwen

  • 定位:阿里巴巴推出的大语言模型,支持中英文双语。
  • 功能:
    • 文本生成、理解和推理能力强大。
    • 可在 Ollama 或 Hugging Face 环境中部署。
  • 优势:
    • 任务灵活:适用于对话生成、知识问答等。
    • 开放性强:支持自定义训练与开源应用。

📎 三者的协作

  • Ollama 提供模型推理服务,并通过 API 接口供其他工具调用。
  • Open WebUI 作为用户界面,与 Ollama 的 API 交互。
  • Qwen 是核心模型,为用户提供实际生成能力。

🛠️ 镜像冗余问题:从发现到解决的完整分析

📌 问题背景

在通过 Docker 部署 Open WebUI 时,始终无法正常启动容器,日志显示 网络无法访问 Hugging Face。但实际根源是 Docker 镜像冗余 导致的容器冲突。

现象:
1. 多个停止状态的容器残留。
2. 重复镜像未清理,导致新容器启动失败。
3. 错误日志显示:

Error response from daemon: conflict: unable to delete <image_id> - image is being used by stopped container.

📋 问题排查与解决

1. 检查运行状态的容器ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Narutolxy

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值