决策树

1.常见的决策树有哪些?
2.各自的特点?
3.剪枝怎么实现?

在线公式编辑:https://codecogs.com/latex/eqneditor.php
信息熵计算:https://blog.csdn.net/memray/article/details/44351913

1.常见的决策树有:ID3,C4.5,CADT.

ID3:

ID3的节点选择采用的是信息增益,信息增益是衡量信息熵降低的大小。
1)经验熵公式计算:
在这里插入图片描述
Ck是样本集合D中属于第k类的样本子集,|Ck|表示该子集的元素个数,|D|表示样本集合元素的个数。
2) 然后计算某个特征A对于数据集D的经验条件熵H(D|A):
对于一个某一特征,如果只有一个类别属性,则该信息熵为0.
在这里插入图片描述
3)则可求从A节点划分的信息增益为:
g(D,A) = H(D) - H(D|A)

C4.5

依靠信息增益比来选择划分特征:
在这里插入图片描述
其中:
在这里插入图片描述
称为数据集D关于A的取值熵。

CART

CART的特征选择采用,基尼指数(Gini).首先需要知晓的是,CART是一颗二叉树,既能做分类树也能做回归树。CART能处理连续型变量(用的是二值划分),包括有缺失值的情况。同时,如果在用于回归树时,使用的时最小平方误差的准则。
基尼指数的定义:
在这里插入图片描述
特征A的基尼指数的定义为:
在这里插入图片描述


  1. 剪枝
    1)一颗完全生长的决策树会面临过拟合的问题,因此需要剪枝提高泛化能力。
    2)剪枝有两种方式,预剪枝和后剪枝。首先,预剪枝是在树生长的过程中提前停止生长,而后剪枝是在已经生成过拟合的决策树上进行剪枝。
    3)预剪枝,是先计算当前的划分是否能带来模型泛化能力的提升。预剪枝对于何时停止决策树的生长:
    (i)当属达到一定深度时停止。
    (ii)当到达节点的样本数量小于一个阈值时,停止向下生长。
    (iii)计算每次分裂对测试准确度的提升,当小于某一阈值时,停止生长。
    缺点:可能导致欠拟合的风险。可能某些节点的划分对测试集帮助不大,但是在之后的划分时,准确率增大。
    4)后剪枝:通过在测试集的准确率的表现。来判断是否在此处进行剪枝。相对于预剪枝,后剪枝得到的决策树泛化能力更强,但是开销更大。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值