学习笔记4 seaborn库

本文详细介绍了Seaborn库在Python数据分析中的应用,包括整体布局的设置,如set_style()和set()函数的使用,以及distplot()和kdeplot()的图表类型。此外,还讨论了子图布局、不同风格的图和调色板的定制,如cubehelix_palette()、light_palette()和dark_palette()。文中强调了单变量分析和多变量分析的绘图技巧,如pairplot()、regplot()、lmplot()、stripplot()以及FacetGrid()的使用。
摘要由CSDN通过智能技术生成
  1. 整体布局
    import seaborn as sns
  2. set_style( ) 和 set( )
    set_style( )是用来设置主题的,Seaborn有五个预设好的主题: darkgrid(默认,横纵坐标都有标线,组成一个一个格子,背景稍微深色) , whitegrid(横坐标有标线,纵坐标没有标线,背景白色) , dark(背景稍微深色,没有标线线) , white (背景白色,没有标线线),和 ticks(xy轴都有非常短的小刻度) 默认: darkgrid
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns
sns.set_style("whitegrid")
plt.plot(np.arange(10))
plt.show()

在这里插入图片描述
set( )通过设置参数可以用来设置背景,调色板等,更加常用。

import seaborn as sns
import matplotlib.pyplot as plt
sns.set(style="white", palette="muted", color_codes=True)     #set( )设置主题,调色板更常用
plt.plot(np.arange(10))
plt.show()

在这里插入图片描述

  1. distplot( ) kdeplot( )
    distplot( )为hist加强版,kdeplot( )为密度曲线图
import numpy as np
import seaborn as sns
import matplotlib.pyplot as plt
sns.set( palette="muted", color_codes=True)
rs = np.random.RandomState(10)
d = rs.normal(size=100)
f, axes = plt.subplots(2, 2, figsize=(7, 7), sharex=True)
sns.distplot(d, kde=False, color="b", ax=axes[0, 0])
sns
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值