ID3和C4.5的区别

1.ID3算法存在的缺点

(1)ID3算法在选择根节点和各内部节点中的分支属性时,采用信息增益作为评价标准。信息增益的缺点是倾向于选择取值较多的属性,在有些情况下这类属性可能不会提供太多有价值的信息。

(2)ID3算法只能对描述属性为离散型属性的数据集构造决策树。

2. C4.5算法做出的改进

(1) 用信息增益率来选择属性

克服了用信息增益来选择属性时偏向选择值多的属性的不足。信息增益率定义为:

其中Gain(S,A)与ID3算法中的信息增益相同,而分裂信息SplitInfo(S,A)代表了按照属性A分裂样本集S的广度和均匀性。

其中,S1到Sc是c个不同值的属性A分割S而形成的c个样本子集。

如按照属性A把S集(含30个用例)分成了10个用例和20个用例两个集合

则SplitInfo(S,A)=-1/3*log(1/3)-2/3*log(2/3)

(2) 可以处理连续数值型属性

C4.5既可以处理离散型描述属性,也可以处理连续性描述属性。在选择某节点上的分枝属性时,对于离散型描述属性,C4.5的处理方法与ID3相同,按照该属性本身的取值个数进行计算;对于某个连续性描述属性Ac,假设在某个结点上的数据集的样本数量为total,C4.5将作以下处理。

l 将该结点上的所有数据样本按照连续型描述属性的具体数值,由小到大进行排序,得到属性值的取值序列{A1c,A2c,……Atotalc}。

l 在取值序列中生成total-1个分割点。第i(0<i<total)个分割点的取值设置为Vi=(Aic+A(i+1)c)/2,它可以将该节点上的数据集划分为两个子集。

l 从total-1个分割点中选择最佳分割点。对于每一个分割点划分数据集的方式,C4.5计算它的信息增益比,并且从中选择信息增益比最大的分割点来划分数据集。

(3)采用了一种后剪枝方法

避免树的高度无节制的增长,避免过度拟合数据,

该方法使用训练样本集本身来估计剪枝前后的误差,从而决定是否真正剪枝。方法中使用的公式如下:

其中N是实例的数量,f=E/N为观察到的误差率(其中E为N个实例中分类错误的个数),q为真实的误差率,c为置信度(C4.5算法的一个输入参数,默认值为0.25),z为对应于置信度c的标准差,其值可根据c的设定值通过查正态分布表得到。通过该公式即可计算出真实误差率q的一个置信度上限,用此上限为该节点误差率e做一个悲观的估计:


通过判断剪枝前后e的大小,从而决定是否需要剪枝。

(4)对于缺失值的处理

在某些情况下,可供使用的数据可能缺少某些属性的值。假如〈x,c(x)〉是样本集S中的一个训练实例,但是其属性A的值A(x)未知。处理缺少属性值的一种策略是赋给它结点n所对应的训练实例中该属性的最常见值;另外一种更复杂的策略是为A的每个可能值赋予一个概率。例如,给定一个布尔属性A,如果结点n包含6个已知A=1和4个A=0的实例,那么A(x)=1的概率是0.6,而A(x)=0的概率是0.4。于是,实例x的60%被分配到A=1的分支,40%被分配到另一个分支。这些片断样例(fractional examples)的目的是计算信息增益,另外,如果有第二个缺少值的属性必须被测试,这些样例可以在后继的树分支中被进一步细分。C4.5就是使用这种方法处理缺少的属性值。

3.  C4.5算法的优缺点

优点:产生的分类规则易于理解,准确率较高。

缺点:在构造树的过程中,需要对数据集进行多次的顺序扫描和排序,因而导致算法的低效。此外,C4.5只适合于能够驻留于内存的数据集,当训练集大得无法在内存容纳时程序无法运行。
  • 0
    点赞
  • 16
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值