一、SAT
1、介绍
(1)定义
SAT即命题逻辑公式的可满足性问题/布尔可满足性问题。即给定一个与或非和变量组成的命题公式,判断是否存在一些结果使得这个公式成立
它是第一个被确认为NP完全的问题。
- 输入:合取范式(CNF)
- 输出:布尔值,代表是否可满足(SAT/UNSAT)
以演讲是否需要打领带的例子,说明它有几个组成部分:
- 布尔变量/文字(literal):tie(领带),shirt(衬衫)
- 符号:~(非)、∧(与)、 ∨(或)
- 子句(clause)-析取式
- 演讲不能只打领带,不穿衬衫: (tie∧shirt) → ~ tie ∨ shirt
- 演讲不能既不打领带,也不穿衬衫: ( tie∧~shirt) → tie ∨ shirt
- 自己不喜欢既打领带,又穿衬衫: ~(tie∧shirt) → ~ tie ∨ ~ shirt
- 约束/公式-合取式: (~ tie ∨ shirt) ∧ (tie ∨ shirt) ∧ (~ tie ∨ ~ shirt)
由文字和符号组成子句。经过变换,子句构成完整约束。则SAT求解器的输入是3个子句。
(2)求解思路
SAT的求解过程可以划分成两个阶段:第一阶段是布尔约束传播/子句传播,第二阶段是冲突分析,可以采用递归回溯(DPLL算法)或冲突子句学习(CDCL算法)。
求解过程及两个算法的差异可以在网站 https://cse442-17f.github.io/Conflict-Driven-Clause-Learning/ 上看到可视化效果。
a)布尔约束传播
子句传播就类似在做数独游戏时,在某个空格填入某一个数字之后,就会排除掉一些其它空格内数字的选项,从而减少尝试赋值的次数。如果这个过程推出一个值为假的子句,我们称为『发生冲突』。如果发生冲突,就像是走迷宫,要退回上一个岔路口,选择一条不同的路再继续走。它的运行思路如下:
- 对一个文字赋值后,以此为条件进一步给其他文字赋值(BCP)
- 未发生冲突,尝试为下一个赋值。
- 直到所有变量均赋值且没有冲突 → SAT
- 发生冲突,回溯
但这个过程也有可能在退到上一个路口后又来到同一个死胡同,我们希望找到可以避开死胡同的岔路。这就来到冲突分析环节。
b)冲突分析
-
递归回溯(DPLL算法)
冲突回溯也会产生两个结果:回溯到了首次赋值,这意味着这个问题横竖都是无法满足的,那么就可以宣告“UNSAT”;反之,则回溯到之前的某次赋值,撤销这次赋值之后的所有赋值,类似一个undo操作。这个就是比较经典的DPLL算法,但这样存在一些问题。一方面是,它遇到冲突的时候,只知道当前的部分赋值会导致冲突,除此之外学不到任何东西。另一方面,它每次只会回溯一层,因此可能会把大量时间浪费在一片必定会失败的搜索空间中。DPLL的运行思路如下:
-
回溯到首次赋值 → UNSAT
-
回溯到之前某次赋值
- 撤销这次之后的所有赋值
- 换一条没走过的路
-
-
冲突子句学习(CDCL算法)
CDCL的不同之处在于,我们是如何从这一步走入之前的冲突的信息,现在作为一个新的子句被加入到子句列表中,为要使这个新子句满足,我们一定不会再进入到之前的冲突了。它比DPLL多了一步操作,运行思路如下:
- 回溯到首次赋值 → UNSAT
- 回溯到之前某次赋值
- 撤销这次之后的所有赋值
- 这次冲突作为新的子句加入到条件中
- 换一条没走过没冲突的路
2、Minisat求解器
Github:https://github.com/niklasso/minisat
Minisat的基本使用方法:https://blog.csdn.net/nbu_dahe/article/details/115518719
(1)安装
sudo apt install minisat
- 使用说明:minisat --help
- 使用格式:
minisat [options] <input-file> <result-output-file>
- 使用格式:
(2)使用
- 创建
CNF.txt
文件如下,c代表注释行
【CNF.txt】
c An example DIMACS CNF
p cnf 2 3
-1 2 0
1 2 0
-1 -2 0
- 示例一
用minisat
调用刚才创建的CNF.txt
,结果输出到answer.txt
.txt
的后缀名也可以改成.cnf
minisat CNF.txt answer.txt
运行完成后会在当前目录得到一个answer.txt
【answer.txt】
SAT
-1 2 0
- 示例二
【CNF.txt】
p cnf 2 4
-1 2 0
1 2 0
-1 -2 0
1 -2 0
【answer.txt】
UNSAT
3、EasySAT求解器
Github: https://github.com/shaowei-cai-group/EasySAT
安装:在目录下make
4、其他求解器
CaDiCaL求解器:github
其他:GRASP、Chaff、SATO、BerkMin
二、SMT
1、介绍
这个SMT是在SAT的基础上实现的,目的是求出指定约束下的可行解。如果说SAT把注意力放在命题公式判定上,SMT就在SAT的基础上可以分析各种不等式和等式下的约束求解
SMT惰性算法流程如下:
- 1、对SMT公式进行预处理,把公式中的命题变量替换为布尔变量,再将SMT公式转化为可满足性意义上等价的SAT公式;
- 2、检查此SAT公式是否可满足,如果不可满足,那么SMT公式也不可满足,算法结束;
- 3、如果SAT公式可满足,则结合SMT背景理论去判断SMT公式的可满足性,返回判断结果,算法结束。
- 惰性算法是SAT求解器与对应的背景理论相结合的产物
2、z3-solver求解器
z3-solver是由Microsoft Research(微软)开发的SMT求解器,它用于检查逻辑表达式的可满足性,可以找到一组约束中的其中一个可行解,缺点是无法找出所有的可行解(对于规划求解问题可以是scipy) 。
z3-solver可应用于软/硬件的验证与测试、约束求解、混合系统的分析、安全、生物,以及几何求解等问题。
Z3主要由**C++**开发,提供了.NET、 C、 C++