Ex 11.1

Code
import numpy as np
import matplotlib.pyplot as plt
from pylab import *
x=linspace(0,2,1000)
y=sin(x-2)**2*exp(-x**2)
fig, ax=plt.subplots()
ax.plot(x,y)
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('Ex 11.1')
plt.show()Result

Ex 11.2

Code
import numpy as np
import matplotlib.pyplot as plt
X=np.random.rand(20,10)
b=np.random.rand(10)
z=np.random.normal(size=20)
y=X.dot(b)+z
estb=np.linalg.inv(X.T.dot(X)).dot(X.T).dot(y)
x=np.arange(10)
fig, ax=plt.subplots()
ax.scatter(x,b,color='red',label="true")
ax.scatter(x,estb,color='green',label="estimated")
ax.set_xlabel('x')
ax.set_ylabel('y')
ax.set_title('Ex 11.2')
ax.legend()
plt.show()Result

Ex 11.3

Code
import numpy as np
import matplotlib.pyplot as plt
from scipy import stats
from pylab import *
y=np.random.normal(size=10000)
kernel = stats.gaussian_kde(y)
x=np.linspace(-4,4,1000)
plt.hist(y,bins=25,rwidth=0.9,color='b',density=True)
plt.plot(x,kernel.evaluate(x),color='r')
plt.show()
Result

本文通过三个实例展示了如何使用Python中的NumPy和Matplotlib进行数据生成、绘图及简单线性回归估计。首先,绘制了一个由正弦函数与指数函数组合而成的曲线;其次,通过模拟数据点演示了最小二乘法求解线性回归系数的过程;最后,对一维正态分布数据进行了直方图展示,并与核密度估计曲线进行了对比。
556

被折叠的 条评论
为什么被折叠?



