转载自:
http://wiki.jikexueyuan.com/project/tensorflow-zh/get_started/os_setup.html
http://www.cnblogs.com/simplelovecs/p/5149982.html
tensorflow的Virtualenv安装方式安装
本文介绍了如何在ubuntu上以virtualenv方式安装tensorflow。
安装pip和virtualenv:
1
2
3
4
5
6
|
# Ubuntu/Linux 64-bit
sudo
apt-get
install
python-pip python-dev python-virtualenv
# Mac OS X
sudo
easy_install pip
sudo
pip
install
--upgrade virtualenv
|
创建 Virtualenv 虚拟环境:
进入你想安装tensorflow的父目录下,然后执行下面命令建立虚拟环境:
1
|
virtualenv --system-site-packages tensorflow
|
激活虚拟环境并安装tensorflow:
对于python27,则执行如下命令:
1
2
3
4
5
6
7
8
9
10
11
12
|
source
.
/tensorflow/bin/activate
# If using bash
source
.
/tensorflow/bin/activate
.csh
# If using csh
(tensorflow)$
# Your prompt should change
# Ubuntu/Linux 64-bit, CPU only:
pip
install
--upgrade https:
//storage
.googleapis.com
/tensorflow/linux/cpu/tensorflow-0
.6.0-cp27-none-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled:
pip
install
--upgrade https:
//storage
.googleapis.com
/tensorflow/linux/gpu/tensorflow-0
.6.0-cp27-none-linux_x86_64.whl
# Mac OS X, CPU only:
pip
install
--upgrade https:
//storage
.googleapis.com
/tensorflow/mac/tensorflow-0
.6.0-py2-none-any.whl
|
对于python3则执行如下命令:
1
2
3
4
5
6
7
8
9
10
11
12
|
source
.
/tensorflow/bin/activate
# If using bash
source
.
/tensorflow/bin/activate
.csh
# If using csh
(tensorflow)$
# Your prompt should change
# Ubuntu/Linux 64-bit, CPU only:
pip
install
--upgrade https:
//storage
.googleapis.com
/tensorflow/linux/cpu/tensorflow-0
.6.0-cp34-none-linux_x86_64.whl
# Ubuntu/Linux 64-bit, GPU enabled:
pip
install
--upgrade https:
//storage
.googleapis.com
/tensorflow/linux/gpu/tensorflow-0
.6.0-cp34-none-linux_x86_64.whl
# Mac OS X, CPU only:
pip3
install
--upgrade https:
//storage
.googleapis.com
/tensorflow/mac/tensorflow-0
.6.0-py3-none-any.whl
|
测试安装:
在终端执行如下命令进入python shell环境:
1
|
python
|
在python shell环境中测试:
1
2
3
4
5
6
7
8
9
10
|
>>>
import
tensorflow as tf
>>> hello
=
tf.constant(
'Hello, TensorFlow!'
)
>>> sess
=
tf.Session()
>>>
print
(sess.run(hello))
Hello, TensorFlow!
>>> a
=
tf.constant(
10
)
>>> b
=
tf.constant(
32
)
>>>
print
(sess.run(a
+
b))
42
>>>
|
- 如果遇到如下错误:
1
2
|
_mod = imp.load_module(
'_pywrap_tensorflow'
, fp, pathname, description)
ImportError: libcudart.so.7.0: cannot
open
shared object
file
: No such
file
or directory
|
那是你的CUDA安装配置不对:
安装CUDA和CUDNN可以参考 这篇文章 。
且添加如下两行到你的 ~/.bashrc 文件
1
2
|
export
LD_LIBRARY_PATH=
"$LD_LIBRARY_PATH:/usr/local/cuda/lib64"
export
CUDA_HOME=
/usr/local/cuda
|
- 如果遇到如下错误:
1
2
3
4
5
6
7
8
9
10
11
12
13
|
Python
2.7
.
9
(default, Apr
2
2015
,
15
:
33
:
21
)
[GCC
4.9
.
2
] on linux2
Type
"help"
,
"copyright"
,
"credits"
or
"license"
for
more information.
>>>
import
tensorflow
I tensorflow
/
stream_executor
/
dso_loader.cc:
93
] Couldn't
open
CUDA library libcublas.so.
7.0
. LD_LIBRARY_PATH: :
/
usr
/
local
/
cuda
/
lib64
I tensorflow
/
stream_executor
/
cuda
/
cuda_blas.cc:
2188
] Unable to load cuBLAS DSO.
I tensorflow
/
stream_executor
/
dso_loader.cc:
93
] Couldn't
open
CUDA library libcudnn.so.
6.5
. LD_LIBRARY_PATH: :
/
usr
/
local
/
cuda
/
lib64
I tensorflow
/
stream_executor
/
cuda
/
cuda_dnn.cc:
1382
] Unable to load cuDNN DSO
I tensorflow
/
stream_executor
/
dso_loader.cc:
93
] Couldn't
open
CUDA library libcufft.so.
7.0
. LD_LIBRARY_PATH: :
/
usr
/
local
/
cuda
/
lib64
I tensorflow
/
stream_executor
/
cuda
/
cuda_fft.cc:
343
] Unable to load cuFFT DSO.
I tensorflow
/
stream_executor
/
dso_loader.cc:
101
] successfully opened CUDA library libcuda.so locally
I tensorflow
/
stream_executor
/
dso_loader.cc:
93
] Couldn't
open
CUDA library libcurand.so.
7.0
. LD_LIBRARY_PATH: :
/
usr
/
local
/
cuda
/
lib64
I tensorflow
/
stream_executor
/
cuda
/
cuda_rng.cc:
333
] Unable to load cuRAND DSO.
|
由安装报错可知,它使用的是7.0版本,故找不到,而如果你安装的是7.5版本,则可以执行如下命令添加相应链接:
1
2
3
4
|
sudo
ln
-s
/usr/local/cuda/lib64/libcudart
.so.7.5
/usr/local/cuda/lib64/libcudart
.so.7.0
sudo
ln
-s libcublas.so.7.5 libcublas.so.7.0
sudo
ln
-s libcudnn.so.4.0.4 libcudnn.so.6.5
sudo
ln
-s libcufft.so libcufft.so.7.0<br>
sudo
ln
-s libcurand.so libcurand.so.7.0
|