pat甲级1002.A+B for Polynomials

题目信息:
This time, you are supposed to find A+B where A and B are two polynomials.

Input

Each input file contains one test case. Each case occupies 2 lines, and each line contains the information of a polynomial: K N1 aN1 N2 aN2 … NK aNK, where K is the number of nonzero terms in the polynomial, Ni and aNi (i=1, 2, …, K) are the exponents and coefficients, respectively. It is given that 1 <= K <= 10,0 <= NK < … < N2 < N1 <=1000.

Output

For each test case you should output the sum of A and B in one line, with the same format as the input. Notice that there must be NO extra space at the end of each line. Please be accurate to 1 decimal place.

Sample Input
2 1 2.4 0 3.2
2 2 1.5 1 0.5
Sample Output
3 2 1.5 1 2.9 0 3.2

翻译:
这一次你要计算两个多项式A和B的和.

输入:
每次输入包含一个测试样例.每个样例两行,每一行包含多项式的以下信息: K N1 aN1 N2 aN2 … NK aNK, K是多项式中非零项的个数,Ni 和aNi (i=1, 2, …, K) 是非零项的指数和系数,并且1 <= K <= 10,0 <= NK < … < N2 < N1 <=1000.

输出:
对每一个测试样例,你应该在一行中输出多项式A和B的和,并且以与输入相同的格式的输出.注意行末没有多余空格,精确到一位小数.

样例输入:
2 1 2.4 0 3.2
2 2 1.5 1 0.5

样例输出:
3 2 1.5 1 2.9 0 3.2

思路分析:
使用栈这种ADT来处理这一题.

  1. 对于两个多项式,分别新建栈L1,L2来存储它们.由于输入中指数是降序的,为以后的合并提供了很大的方便.
    这里写图片描述

  2. 合并时首先判断两个栈是否均为非空,均为非空时,比较栈中第一个节点指数的大小,指数小的节点压入合并后的栈L中,并对这个节点所在的栈执行Pop操作,再次执行步骤2. 而当两个节点的指数相等时,判断两个节点的系数和是否为0:若为0,则直接对这两个栈执行Pop操作,再次执行步骤2直到不满足条件为止;若不为0,则将其系数相加后和指数压入L中,对这两个栈执行Pop操作,再次执行步骤2直到不满足条件为止.

  3. 依次判断L1,L2是否为空,若不为空,则将其节点压入L中,并执行Pop操作直到其变为空栈.至此合并完成.

  4. 打印栈L.(其中L的节点个数可以用L头结点中的指数来表示,在初始化时这个值置零,然后每一次对L执行Push操作时,这个值加1)

注意:当合并后的链表为空,即所有的系数均为零时,输出”0”即可.

代码(我的环境为vs2017):

#include "stdafx.h"
#include <iostream>
#include <stdio.h>
#include <iomanip>
#include <stdlib.h>
#include <math.h>
#include <string.h>
using namespace std;

struct Node
{
    int Exp;
    double Coe;
    Node* Next;
};
typedef Node* List;
class Stack
{
public:
    List CreateList()
    {
        List L = new Node;
        L->Coe = L->Exp = 0;
        L->Next = NULL;
        return L;
    }
    bool IsEmpty(List L)
    {
        return L->Next == NULL;
    }
    List Push(int Exp, double Coe,List L)
    {
        List NewCell = new Node;
        NewCell->Coe = Coe;
        NewCell->Exp = Exp;
        NewCell->Next = NULL;
        NewCell->Next = L->Next;
        L->Next = NewCell;
        return L;
    }
    List Pop(List L)
    {
        if (IsEmpty(L))
            return NULL;
        List Tmp = L->Next;
        L->Next = L->Next->Next;
        delete Tmp;
    }
    List Merge(List L1, List L2)
    {
        List L = CreateList();
        List P1 = L1->Next, P2 = L2->Next;
        while (1)
        {
            P1 = L1->Next, P2 = L2->Next;
            if (!(P1 != NULL&&P2 != NULL))
                break;
            if (P1->Exp < P2->Exp)
            {
                Push(P1->Exp, P1->Coe, L);
                Pop(L1);
                L->Exp++;
            }
            else if (P1->Exp > P2->Exp)
            {
                Push(P2->Exp, P2->Coe, L);
                Pop(L2);
                L->Exp++;
            }
            else
            {
                if (abs(P1->Coe + P2->Coe) > 0.0001)
                {
                    Push(P1->Exp, P1->Coe + P2->Coe, L);
                    L->Exp++;
                }
                Pop(L1);
                Pop(L2);
            }
        }
        while (1)
        {
            P1 = L1->Next;
            if (P1 == NULL)
                break;
            Push(P1->Exp, P1->Coe, L);
            Pop(L1);
            L->Exp++;
        }
        while (1)
        {
            P2 = L2->Next;
            if (P2 == NULL)
                break;
            Push(P2->Exp, P2->Coe, L);
            Pop(L2);
            L->Exp++;
        }
        return L;
    }
    void Print(List L)
    {
        if (L->Next == NULL)
        {
            cout << "0\n";
            return;
        }
        cout << L->Exp << " ";
        List P;
        for (int i = 0; i < L->Exp - 1; i++)
        {
            P = L->Next;
            cout << P->Exp << " " <<fixed<<setprecision(1)<< P->Coe << " ";
            Pop(L);
        }
        cout << L->Next->Exp << " " << fixed << setprecision(1) << L->Next->Coe << endl;
    }
};
int main()
{
    Stack S;
    List L1 = S.CreateList();
    List L2 = S.CreateList();
    int K1, K2;
    scanf("%d", &K1);
    int Exp;
    double Coe;
    for (int i = 0; i < K1; i++)
    {
        scanf("%d", &Exp);
        scanf("%lf", &Coe);
        S.Push(Exp, Coe, L1);
    }
    scanf("%d", &K2);
    for (int i = 0; i < K2; i++)
    {
        scanf("%d", &Exp);
        scanf("%lf", &Coe);
        S.Push(Exp, Coe, L2);
    }
    List L= S.Merge(L1, L2);
    S.Print(L);
    return 0;
}
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: 好的,以下是关于多项式加法的解答: 多项式是一种数学表达式,其中包含了一个或多个变量的项,每个项包括了一个系数和指数。多项式的加法是将两个多项式相加,使得同一指数的项相加并合并同类项。 例如,考虑以下两个多项式: a = 3x^2 + 2x + 1 b = 5x^3 + 2x^2 - 3x + 4 它们的和为: a + b = 5x^3 + 5x^2 - x + 5 为了实现多项式加法,我们可以使用类似于整数加法的算法。首先,我们按照指数从高到低的顺序将两个多项式的项进行排列,并合并同类项。然后,将同一指数的项的系数相加,并创建一个新的多项式来表示它们的和。 以下是一个用 Python 实现多项式加法的示例代码: ```python def add_polynomials(a, b): result = {} for exponent, coefficient in a.items(): result[exponent] = coefficient + result.get(exponent, 0) for exponent, coefficient in b.items(): result[exponent] = coefficient + result.get(exponent, 0) return {k: v for k, v in sorted(result.items(), reverse=True)} ``` 在这个函数中,我们使用一个字典来表示多项式。字典的键是多项式中每个项的指数,而值是该项的系数。我们首先遍历多项式 a 的每个项,并将其系数添加到结果字典中相应指数的项中。然后,我们再遍历多项式 b 的每个项,并将其系数添加到结果字典中相应指数的项中。最后,我们将结果字典按照指数从高到低的顺序排序,并返回结果。 例如,我们可以使用以下代码来测试上面的函数: ```python a = {2: 3, 1: 2, 0: 1} b = {3: 5, 2: 2, 1: -3, 0: 4} print(add_polynomials(a, b)) # 输出:{3: 5, 2: 5, 1: -1, 0: 5} ``` 这个例子中,我们将多项式 a 和 b 传递给 `add_polynomials` 函数,并打印函数的返回值。函数返回的结果是一个字典,其中包含了相加后的多项式的各项系数。 希望这可以回答你的问题! ### 回答2: 我们考虑两个多项式P(x)和Q(x),并给予它们各自的次数a和b。那么,首先我们要确定它们的乘积,也就是P(x)乘以Q(x)。我们可以通过分配律将乘积展开,得到一个系数为c_i的新多项式R(x): P(x) * Q(x) = R(x) = c_0 + c_1x + c_2x^2 + ... + c_{a+b}x^{a+b} 其中,c_i表示x的i次项的系数。为了计算出这些系数,我们需要对所有次数小于或等于a+b的i进行求和。具体来说,我们可以使用下面这个公式: c_i = sum(j=0 to i) P(j) * Q(i-j) 也就是说,第i项的系数是将第一个多项式中次数小于或等于j的项和第二个多项式中次数等于i-j的项相乘,并且对所有j求和。我们可以使用循环来计算这些系数。 需要注意的是,由于两个非零多项式的乘积的次数至少为a+b,因此我们需要为求和循环的上界设置一个适当的值。具体来说,可以将循环的上界设置为a+b,这样就能保证所有的系数都会被计算。此外,如果某个系数为0,则可以将它省略掉,以减少计算量。 在实现时,还需要注意多项式乘法中的一些细节。例如,当某个多项式的系数为0时,我们可以假定它的所有次数都对应了一个系数为0的项。此外,我们需要考虑多项式乘法的精度,以避免出现浮点数误差。具体来说,可以使用一些特殊的技巧来避免浮点数误差,例如将系数表示为有理数,或者使用任意精度计算库。 总之,多项式乘法是非常基础的数学问题,也是很多算法和应用程序的核心部分。通过合理地选择算法和编写高效的代码,我们可以在计算多项式乘法时获得比较优秀的性能。 ### 回答3: 题意: 给定两个多项式 $A(x)$ 和 $B(x)$,请求出它们的乘积 $C(x)$ 思路: 多项式乘法非常简单,就是按照手算乘法的规则将每一项相乘然后相加。但是对于两个多项式相乘,需要循环枚举每一项相乘,最终将结果相加。如果直接按照手算乘法来做会有很多重复的计算,因此需要使用一些技巧来优化计算过程。下面给出两种常见的优化方法: 方法一:常规乘法过程 对于两个多项式 $A(x) = a_0 x^0 + a_1 x^1 + ... + a_n x^n$ 和 $B(x) = b_0 x^0 + b_1 x^1 + ... + b_m x^m$,它们的乘积可以表示为 $$C(x) = A(x) \cdot B(x) = c_0 x^0 + c_1 x^1 + ... + c_{n+m} x^{n+m}$$ 其中 $c_k$ 是 $A(x)$ 中所有次数为 $i$ 的项和 $B(x)$ 中所有次数为 $k-i$ 的项的乘积之和,即 $$c_k = \sum_{i=0}^{k} a_i b_{k-i}$$ 对于每一个 $k$,需要循环枚举 $i$ 的值,这样时间复杂度就是 $O(nm)$,无法通过本题。 方法二:多项式快速幂 快速幂是一种用来计算 $a^n$ 的算法,可以将计算次数从 $O(n)$ 优化到 $O(\log n)$,非常高效。对于两个多项式 $A(x)$ 和 $B(x)$,它们的乘积可以表示为 $$C(x) = A(x) \cdot B(x)$$ 令 $A(x) = A_0(x) + A_1(x) x^{\frac{n}{2}}, B(x) = B_0(x) + B_1(x) x^{\frac{n}{2}}$,其中 $n$ 是 $A(x)$ 和 $B(x)$ 最高次项次数加一并且是 $2$ 的幂次方,$A_0(x)$ 和 $B_0(x)$ 是 $A(x)$ 和 $B(x)$ 中次数不大于 $\frac{n}{2}$ 的项组成的多项式,$A_1(x)$ 和 $B_1(x)$ 是 $A(x)$ 和 $B(x)$ 中次数大于 $\frac{n}{2}$ 的项组成的多项式,即 $$A(x) = A_0(x) + x^{\frac{n}{2}} A_1(x)$$ $$B(x) = B_0(x) + x^{\frac{n}{2}} B_1(x)$$ 则有 $$C(x) = A(x) \cdot B(x) = A_0(x) B_0(x) + x^n A_1(x) B_1(x) + x^{\frac{n}{2}} (A_0(x) B_1(x) + A_1(x) B_0(x))$$ 我们可以首先递归计算以下三个多项式: $$C_0(x) = A_0(x) \cdot B_0(x)$$ $$C_1(x) = A_1(x) \cdot B_1(x)$$ $$C_2(x) = (A_0(x) + A_1(x)) \cdot (B_0(x) + B_1(x))$$ 然后将它们合并成最终结果,即 $$C(x) = C_0(x) + x^n C_1(x) + x^{\frac{n}{2}} (C_2(x) - C_0(x) - C_1(x))$$ 这样可以将时间复杂度优化到 $O(n \log n)$,可以通过本题。 AC CODE:

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值