神经网络尺寸和参数量计算

这篇博客主要介绍了神经网络中卷积层的参数计算方法,包括卷积层的参数量计算公式,并探讨了不使用填充时的输出尺寸计算。内容引用自多个资源,旨在帮助读者理解和记忆这些关键计算。
摘要由CSDN通过智能技术生成

前言

这里写个参数计算,会借鉴各路大神的杰作,主要是整理一下怕自己以后忘了找起来麻烦
大部分引自https://blog.csdn.net/qian99/article/details/79008053

参数计算方法

首先是卷积层的计算

下面是一个32x32x3的输入,我们用5x5x3的滤波器去卷积

在这里插入图片描述
所以最后是553=75的一个参数量

在这里插入图片描述那么最后的输出也是需要一个公式的,一般我们如果使用填充将不改变输出尺寸,而只改变滤波器数量。
那么如果不使用填充,则见下面的输出计算

如果上面我用了6个滤波器,那么输出为28x28x6,则参数量为5x5x3x6+6=456

对CNN而言,每个卷积层的参数量计算如下:

在这里插入图片描述

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值