吴恩达 【机器学习】第七章 Logistic回归

吴恩达 【机器学习】第七章 逻辑回归Logistic Regression

7.1 分类Classification

  • 预测离散的变量
  • 举例证明线性回归不能很好地处理分类问题
  • 逻辑回归(Logistic Regression)是解决分类(Classification)问题的一种算法

7.2 假设函数

  • 逻辑回归,该模型的输出变量范围始终在0和1之间。
  • 逻辑回归模型的假设是:
    h θ ( x ) = g ( θ T x ) h_\theta \left( x \right)=g\left(\theta^{T}x \right) hθ(x)=g(θTx)
    g ( z ) = 1 1 + e − z g\left( z \right)=\frac{1}{1+{{e}^{-z}}} g(z)=1+ez1
  • 其中:
    1. X X X 代表特征向量
    2. g g g 代表逻辑函数(logistic function)是一个常用的逻辑函数,这里用Sigmoid函数(Sigmoid function),公式为: g ( z ) = 1 1 + e − z g\left( z \right)=\frac{1}{1+{{e}^{-z}}} g(z)=1+ez1

python代码实现:

import numpy as np
    
def sigmoid(z):
   return 1 / (1 + np.exp(-z))

该函数的图像为:
在这里插入图片描述

  • 对模型的理解:
    h θ ( x ) = g ( θ T x ) h_\theta \left( x \right)=g\left(\theta^{T}x \right) hθ(x)=g(θTx)
    g ( z ) = 1 1 + e − z g\left( z \right)=\frac{1}{1+{{e}^{-z}}} g(z)=1+ez1

  • h θ ( x ) h_\theta \left( x \right) hθ(x)的作用是:对于给定的输入变量,根据选择的参数计算输出变量=1的可能性(estimated probablity)即 h θ ( x ) = P ( y = 1 ∣ x ; θ ) h_\theta \left( x \right)=P\left( y=1|x;\theta \right) hθ(x)=P(y=1x;θ)
    例如,如果对于给定的 x x x,通过已经确定的参数计算得出 h θ ( x ) = 0.7 h_\theta \left( x \right)=0.7 hθ(x)=0.7,则表示有70%的几率 y y y为正向类,相应地 y y y为负向类的几率为1-0.7=0.3。

7.3 决策界限Decision Boundary

  • 决策边界是由参数 θ \theta θ决定的,而不是由训练集决定的
  • 训练集是用来拟合(fit)参数 θ \theta θ
  • 举例:
    在这里插入图片描述
    在这里插入图片描述
  • 我们可以用非常复杂的模型来适应非常复杂形状的判定边界。

7.4 代价函数

  • 如果用线性回归里用的差平方作为cost函数,再加上非线性的sigmiod函数,会使得最终函数非凸(non-convex),有很多局部最小值,梯度下降很难找到全局最优解在这里插入图片描述
  • 线性回归的代价函数为:
    J ( θ ) = 1 m ∑ i = 1 m 1 2 ( h θ ( x ( i ) ) − y ( i ) ) 2 J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{\frac{1}{2}{{\left( {h_\theta}\left({x}^{\left( i \right)} \right)-{y}^{\left( i \right)} \right)}^{2}}} J(θ)=m1i=1m21(hθ(x(i))y(i))2
  • 我们重新定义逻辑回归的代价函数为:
    J ( θ ) = 1 m ∑ i = 1 m C o s t ( h θ ( x ( i ) ) , y ( i ) ) J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{{Cost}\left( {h_\theta}\left( {x}^{\left( i \right)} \right),{y}^{\left( i \right)} \right)} J(θ)=m1i=1mCost(hθ(x(i)),y(i))
  • 其中 h θ ( x ) {h_\theta}\left( x \right) hθ(x) C o s t ( h θ ( x ) , y ) Cost\left( {h_\theta}\left( x \right),y \right) Cost(hθ(x),y)之间的关系如下图所示:
    在这里插入图片描述
  • 这样构建的 C o s t ( h θ ( x ) , y ) Cost\left( {h_\theta}\left( x \right),y \right) Cost(hθ(x),y)函数的特点是:
    1. 当实际的 y = 1 y=1 y=1 h θ ( x ) {h_\theta}\left( x \right) hθ(x)也为 1 时误差为 0,
      y = 1 y=1 y=1 h θ ( x ) {h_\theta}\left( x \right) hθ(x)不为1时误差随着 h θ ( x ) {h_\theta}\left( x \right) hθ(x)变小而变大;
    2. 当实际的 y = 0 y=0 y=0 h θ ( x ) {h_\theta}\left( x \right) hθ(x)也为 0 时代价为 0,
      y = 0 y=0 y=0 h θ ( x ) {h_\theta}\left( x \right) hθ(x)不为 0时误差随着 h θ ( x ) {h_\theta}\left( x \right) hθ(x)的变大而变大。
  • 将构建的 C o s t ( h θ ( x ) , y ) Cost\left( {h_\theta}\left( x \right),y \right) Cost(hθ(x),y)简化如下:
    C o s t ( h θ ( x ) , y ) = − y × l o g ( h θ ( x ) ) − ( 1 − y ) × l o g ( 1 − h θ ( x ) ) Cost\left( {h_\theta}\left( x \right),y \right)=-y\times log\left( {h_\theta}\left( x \right) \right)-(1-y)\times log\left( 1-{h_\theta}\left( x \right) \right) Cost(hθ(x),y)=y×log(hθ(x))(1y)×log(1hθ(x))
    在这里插入图片描述
  • 代入代价函数得到:
    J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]
    即: J ( θ ) = − 1 m ∑ i = 1 m [ y ( i ) log ⁡ ( h θ ( x ( i ) ) ) + ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=-\frac{1}{m}\sum\limits_{i=1}^{m}{[{{y}^{(i)}}\log \left( {h_\theta}\left( {{x}^{(i)}} \right) \right)+\left( 1-{{y}^{(i)}} \right)\log \left( 1-{h_\theta}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))+(1y(i))log(1hθ(x(i)))]

Python代码实现:

import numpy as np
    
def cost(theta, X, y):    
	theta = np.matrix(theta)
	X = np.matrix(X)
	y = np.matrix(y)
	first = np.multiply(-y, np.log(sigmoid(X* theta.T)))
	second = np.multiply((1 - y), np.log(1 - sigmoid(X* theta.T)))
	return np.sum(first - second) / (len(X))

7.5 简化代价函数和梯度下降

  • 简化代价函数
    在这里插入图片描述
    在这里插入图片描述
  • 梯度下降
    在这里插入图片描述

7.6 高级优化

用来使代价函数最小化的高级算法

  • 梯度下降
  • 共轭梯度法 (Conjugate Gradient)
  • BFGS (变尺度法)
  • L-BFGS (限制变尺度法)
    在这里插入图片描述

7.7 多类别分类问题:一对多

  • 举例
    在这里插入图片描述
  • 对比
    在这里插入图片描述
  • 做法:"一对余"方法
  1. 我们将多个类中的一个类标记为正向类( y = 1 y=1 y=1),然后将其他所有类都标记为负向类,这个模型记作 h θ ( 1 ) ( x ) h_\theta^{\left( 1 \right)}\left( x \right) hθ(1)(x)
  2. 接着,类似地第我们选择另一个类标记为正向类( y = 2 y=2 y=2),再将其它类都标记为负向类,将这个模型记作 h θ ( 2 ) ( x ) h_\theta^{\left( 2 \right)}\left( x \right) hθ(2)(x),依此类推。
  3. 然后,我们得到一系列的模型简记为: h θ ( i ) ( x ) = p ( y = i ∣ x ; θ ) h_\theta^{\left( i \right)}\left( x \right)=p\left( y=i|x;\theta \right) hθ(i)(x)=p(y=ix;θ)其中: i = ( 1 , 2 , 3.... k ) i=\left( 1,2,3....k \right) i=(1,2,3....k)
  4. 最后,在我们需要做预测时,我们将所有的分类机都运行一遍,然后对每一个输入变量,都选择最高可能性的输出变量。即: max ⁡ i h θ ( i ) ( x ) \mathop{\max}\limits_i h_\theta^{\left( i \right)}\left( x \right) imaxhθ(i)(x)
    在这里插入图片描述
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
本火锅店点餐系统采用Java语言和Vue技术,框架采用SSM,搭配Mysql数据库,运行在Idea里,采用小程序模式。本火锅店点餐系统提供管理员、用户两种角色的服务。总的功能包括菜品的查询、菜品的购买、餐桌预定和订单管理。本系统可以帮助管理员更新菜品信息和管理订单信息,帮助用户实现在线的点餐方式,并可以实现餐桌预定。本系统采用成熟技术开发可以完成点餐管理的相关工作。 本系统的功能围绕用户、管理员两种权限设计。根据不同权限的不同需求设计出更符合用户要求的功能。本系统中管理员主要负责审核管理用户,发布分享新的菜品,审核用户的订餐信息和餐桌预定信息等,用户可以对需要的菜品进行购买、预定餐桌等。用户可以管理个人资料、查询菜品、在线点餐和预定餐桌、管理订单等,用户的个人资料是由管理员添加用户资料时产生,用户的订单内容由用户在购买菜品时产生,用户预定信息由用户在预定餐桌操作时产生。 本系统的功能设计为管理员、用户两部分。管理员为菜品管理、菜品分类管理、用户管理、订单管理等,用户的功能为查询菜品,在线点餐、预定餐桌、管理个人信息等。 管理员负责用户信息的删除和管理,用户的姓名和手机号都可以由管理员在此功能里看到。管理员可以对菜品的信息进行管理、审核。本功能可以实现菜品的定时更新和审核管理。本功能包括查询餐桌,也可以发布新的餐桌信息。管理员可以查询已预定的餐桌,并进行审核。管理员可以管理公告和系统的轮播图,可以安排活动。管理员可以对个人的资料进行修改和管理,管理员还可以在本功能里修改密码。管理员可以查询用户的订单,并完成菜品的安排。 当用户登录进系统后可以修改自己的资料,可以使自己信息的保持正确性。还可以修改密码。用户可以浏览所有的菜品,可以查看详细的菜品内容,也可以进行菜品的点餐。在本功能里用户可以进行点餐。用户可以浏览没有预定出去的餐桌,选择合适的餐桌可以进行预定。用户可以管理购物车里的菜品。用户可以管理自己的订单,在订单管理界面里也可以进行查询操作。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值