Logistic Regression 吴恩达机器学习实验二(逻辑回归)

Linear Regression

实验要求

"""
In this part, you need to use the Logstic Regression which is able to predict wheter students get admission in university. 
Suppose that you are the administrator of a university department and you want to determine each applicant’s chance of admission based on their
results on two exams.
You have historical data from previous applicants that you can use as a training set for logistic regression. 
For each training example, you have the applicant’s scores on two exams and the admissions decision.
Your task is to build a classification model that estimates an applicant’s probability of admission based the scores from those two exams. 
"""

读取数据集

"""
Before starting to implement any learning algorithm, it is always good to visualize the data if possible.
"""
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# extracting data
data = pd.read_csv('ex2data1.txt',header = None,names = ['score1','score2','y'])
data

看看数据集啥样:
在这里插入图片描述
100行3列数据集,两个feature一个label。

可视化数据

可视化数据可以让我们容易明白数据分布,直观理解数据。

# visualizing the data

pos_data = data[data.iloc[:,2]== 1]
neg_data = data[data.iloc[:,2]== 0]

figure = plt.figure(figsize=(8,8))
plt.scatter(pos_data.score1,pos_data.score2,marker = '+',label = 'admitted')
plt.scatter(neg_data.score1,neg_data.score2,marker = 'o',label = 'not admitted')
plt.xlabel('score1')
plt.ylabel('score2')
plt.title("logstic regression")
plt.legend(loc=3)
plt.show()

在这里插入图片描述

sigmoid函数

用numy包里的exp()函数,可以进行向量化的计算。
原函数:
g ( z ) = 1 1 + e − z g\left( z \right)=\frac{1}{1+{{e}^{-z}}} g(z)=1+ez1
与假设函数联立:
h θ ( x ) = 1 1 + e − θ T X {h}_{\theta }\left( x \right)=\frac{1}{1+{{e}^{-{{\theta }^{T}}X}}} hθ(x)=1+eθTX1

# sigmoid function
def sigmoid(x):
    s = 1 / ( 1 + np.exp(-x))
    return s

代价函数

J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( {{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)]} J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]

# compute cost
def ComputeCost(X,y,theta):
    X = np.matrix(X)
    y = np.matrix(y)
    theta = np.matrix(theta)
    first = np.multiply(-y,np.log(sigmoid(X * theta.T )))
    second = np.multiply(1-y,np.log(1-sigmoid(X * theta.T )))
    return np.sum(first - second) / len(X)
    

计算梯度

这里我直接在梯度函数里进行的训练。
向量化计算的批量梯度下降: 1 m X T ( S i g m o i d ( X θ ) − y ) \frac{1}{m} X^T( Sigmoid(X\theta) - y ) m1XT(Sigmoid()y)
∂ J ( θ ) ∂ θ j = 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) \frac{\partial J\left( \theta \right)}{\partial {{\theta }_{j}}}=\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}})x_{_{j}}^{(i)}} θjJ(θ)=m1i=1m(hθ(x(i))y(i))xj(i)

# gradient

def Gradient(X,y,theta,lr,iters):
    temp = np.zeros(theta.shape)
    temp = np.matrix(temp)
    para = int(theta.ravel().shape[1])
    cost = np.zeros(iters)
    for i in range(iters):
        error = sigmoid(X * theta.T ) - y
        for j in range(para):
            term = np.multiply(error , X[:,j] )
            temp[0,j] = theta[0,j] - (( lr / len(X))* np.sum(term))
        
        theta = temp
        cost[i] = ComputeCost(X,y,theta)
        
    return theta, cost
    

初始化参数

# 初始化参数
alpha = 0.001
iters = 100000 # 批量梯度下降需要迭代多次才能取得好的效果

data.insert(0,'Ones',1)
X = data.iloc[:,0:3]
y = data.iloc[:,3:4]
theta = np.matrix([0,0,0])
X = np.matrix(X)
y = np.matrix(y)

# theta.shape,X.shape,y.shape

训练

theta,cost =  Gradient(X,y,theta,alpha,iters)
cost[-1]

计算出最后的代价是:0.3873895227111881

代价是否收敛

可视化看看代价收敛没有:

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(np.arange(iters), cost, 'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Cost')
ax.set_title('Error vs. Training Epoch')
plt.show()

在这里插入图片描述
可以看出正在代价正在下降,但是要达到收敛还需要大量迭代和时间,这里可以看出批量梯度下降的缺点,耗时,需要大量迭代次数。估计会花费许多时间。可以使用SciPy的“optimize”命名空间来做同样的事情。

可视化决策边界

# plotting image

figure = plt.figure(figsize=(8,8))
x1 = np.linspace(data.score1.min(), data.score1.max(), 80)

x2 = -(theta[0,0] + theta[0,1] * x1) / theta[0,2]


plt.plot(x1 , x2 ,'r',label = 'regression')
plt.scatter(pos_data.score1,pos_data.score2,marker = '+',label = 'admitted')
plt.scatter(neg_data.score1,neg_data.score2,marker = 'o',label = 'not admitted')
plt.xlabel('score1')
plt.ylabel('score2')
plt.title("logstic regression")
plt.legend(loc=3)
plt.show()

在这里插入图片描述

评估准确性

def predict(theta, X):
    probability = sigmoid(X * theta.T)
    return [1 if x >= 0.5 else 0 for x in probability]


predictions = predict(theta, X)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))

在这里插入图片描述

正则化的逻辑回归

实验要求

"""
Regularized logistic regression


In this part of the exercise, you will implement regularized logistic regression to predict 
whether microchips from a fabrication plant passes quality assurance (QA). 
During QA, each microchip goes through various tests to ensure it is functioning correctly.


Suppose you are the product manager of the factory and you have the test results for some microchips on two different tests. 
From these two tests,you would like to determine whether the microchips should be accepted or rejected. 
To help you make the decision, you have a dataset of test results on past microchips, from which you can build a logistic regression model.

"""

读取数据

# extracting the data
import numpy as np
import matplotlib.pyplot as plt
import pandas as pd

data2 = pd.read_csv('ex2data2.txt',header = None,names = ['test1','test2','QA'])
data2

在这里插入图片描述

同样可视化数据

# visualizing data

pos_data2 = data2[data2.iloc[:,2] == 1]
neg_data2 = data2[data2.iloc[:,2] == 0]

figure = plt.figure(figsize=(8,8))
plt.scatter(pos_data2.test1,pos_data2.test2,marker = '+',label = 'QA')
plt.scatter(neg_data2.test1,neg_data2.test2,marker = 'o',label = 'not QA')
plt.xlabel('test1')
plt.ylabel('test2')
plt.title("logstic regression")
plt.legend(loc=3)
plt.show()

在这里插入图片描述

特征映射

由上图可以知道,如果要做到分类正负样本,线性分类肯定是行不通的。所以要采用一个高维的决策边界,来区分数据。所以可以使用特征映射,将特征映射到高维。利用特征多项式可以更好地区分数据。由吴恩达实验要求,创建一个28维数据。

degree = 7
x1 = data2['test1']
x2 = data2['test2']



new_x1 = x1
new_x2 = x2
data2.insert(3, 'Ones', 1)

for i in range(1, degree):
    for j in range(0, i+1):
        data2['F' + str(i) + str(j)] = np.power(x1, i-j) * np.power(x2, j)

data2.drop('test1', axis=1, inplace=True)
data2.drop('test2', axis=1, inplace=True)
data2

在这里插入图片描述

代价与梯度

J ( θ ) = 1 m ∑ i = 1 m [ − y ( i ) log ⁡ ( h θ ( x ( i ) ) ) − ( 1 − y ( i ) ) log ⁡ ( 1 − h θ ( x ( i ) ) ) ] + λ 2 m ∑ j = 1 n θ j 2 J\left( \theta \right)=\frac{1}{m}\sum\limits_{i=1}^{m}{[-{{y}^{(i)}}\log \left( {{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)-\left( 1-{{y}^{(i)}} \right)\log \left( 1-{{h}_{\theta }}\left( {{x}^{(i)}} \right) \right)]}+\frac{\lambda }{2m}\sum\limits_{j=1}^{n}{\theta _{j}^{2}} J(θ)=m1i=1m[y(i)log(hθ(x(i)))(1y(i))log(1hθ(x(i)))]+2mλj=1nθj2
梯度更新区分 θ 0 \theta_0 θ0 θ j \theta_j θj j = 1 , 2 , . . . , n j = 1,2,...,n j=1,2,...,n。因为我们不对 θ 0 \theta_0 θ0正则化。
R e p e a t   u n t i l   c o n v e r g e n c e    ⁣ ⁣ {  ⁣ ⁣     θ 0 : = θ 0 − a 1 m ∑ i = 1 m [ h θ ( x ( i ) ) − y ( i ) ] x 0 ( i )   θ j : = θ j − a 1 m ∑ i = 1 m [ h θ ( x ( i ) ) − y ( i ) ] x j ( i ) + λ m θ j    ⁣ ⁣ }  ⁣ ⁣   R e p e a t \begin{align} & Repeat\text{ }until\text{ }convergence\text{ }\!\!\{\!\!\text{ } \\ & \text{ }{{\theta }_{0}}:={{\theta }_{0}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{[{{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}}]x_{_{0}}^{(i)}} \\ & \text{ }{{\theta }_{j}}:={{\theta }_{j}}-a\frac{1}{m}\sum\limits_{i=1}^{m}{[{{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}}]x_{j}^{(i)}}+\frac{\lambda }{m}{{\theta }_{j}} \\ & \text{ }\!\!\}\!\!\text{ } \\ & Repeat \\ \end{align} Repeat until convergence {  θ0:=θ0am1i=1m[hθ(x(i))y(i)]x0(i) θj:=θjam1i=1m[hθ(x(i))y(i)]xj(i)+mλθj } Repeat
对上面的算法中 j=1,2,…,n 时的更新式子进行调整可得:
θ j : = θ j ( 1 − a λ m ) − a 1 m ∑ i = 1 m ( h θ ( x ( i ) ) − y ( i ) ) x j ( i ) {{\theta }_{j}}:={{\theta }_{j}}(1-a\frac{\lambda }{m})-a\frac{1}{m}\sum\limits_{i=1}^{m}{({{h}_{\theta }}\left( {{x}^{(i)}} \right)-{{y}^{(i)}})x_{j}^{(i)}} θj:=θj(1amλ)am1i=1m(hθ(x(i))y(i))xj(i)

# Cost function and gradient

# compute cost
def ReCost(X,y,theta,lr):
    X = np.matrix(X)
    y = np.matrix(y)
    theta = np.matrix(theta)
    first = np.multiply(-y,np.log(sigmoid(X * theta.T )))
    second = np.multiply(1-y,np.log(1-sigmoid(X * theta.T )))
    third =  lr * np.sum(np.multiply(theta,theta)) / ( 2 * (len(X)))
    return np.sum(first - second) / len(X) + third


# gradient

def ReGradient(X,y,theta,aph,iters,lr):
    temp = np.zeros(theta.shape)
    temp = np.matrix(temp)
    para = int(theta.ravel().shape[1])
    cost2 = np.zeros(iters)
    i=0
    for i in range(iters):
        error = sigmoid(X * theta.T ) - y
        term_0 = np.multiply(error , X[:,0] )
        temp[0,0] = temp[0,0] - (aph / len(X)) * np.sum(term_0)
        j = 1
        for j in range(para):
            term = np.multiply(error , X[:,j] )
            temp[0,j] = theta[0,j] - aph * ((( 1 / len(X))* np.sum(term)) + (lr * theta[0,j] / len(X)))
        
        theta = temp
        cost2[i] = ReCost(X,y,theta,lr)
        
    return theta, cost2
    

初始化参数

# 初始化数据

X2 = data2.iloc[:,1:12]
y2 = data2.iloc[:,0:1]
theta2 = np.matrix([0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0])# 28 维
X2 = np.matrix(X2)
y2 = np.matrix(y2)
theta2.shape,X2.shape,y2.shape

# 初始化参数
alpha = 0.001
iters = 50000 # 50000
learningRate = 0 # 1 ,0 , 100

训练

theta_min2,cost2 =  ReGradient(X2,y2,theta2,alpha,iters,learningRate)

可视化是否收敛

还是没有收敛

# 观察正则化逻辑回归代价是否收敛

fig, ax = plt.subplots(figsize=(12,8))
ax.plot(np.arange(iters), cost2, 'r')
ax.set_xlabel('Iterations')
ax.set_ylabel('Cost')
ax.set_title('Error vs. Training Epoch')
plt.show()

在这里插入图片描述

评估模型

# Evaluating logistic regression

def predict2(theta, X):
    probability = sigmoid(X * theta.T)
    return [1 if x >= 0.5 else 0 for x in probability]


predictions = predict2(theta_min2, X2)
correct = [1 if ((a == 1 and b == 1) or (a == 0 and b == 0)) else 0 for (a, b) in zip(predictions, y2)]
accuracy = (sum(map(int, correct)) % len(correct))
print ('accuracy = {0}%'.format(accuracy))

在这里插入图片描述
这个精确度感觉很高了啊。

可视化决策边界

因为我们进行了特征映射,所以在这里还需要对坐标进行对应的特征映射才行。

figure = plt.figure(figsize=(8,8))
# plt_x1 = np.linspace(new_x1.min(),new_x1.max(),118)
# plt_x2 = np.linspace(new_x2.min(),new_x2.max(),118)
plt_x1, plt_x2 = np.meshgrid(np.linspace(new_x1.min(),new_x1.max()), np.linspace(new_x2.min(),new_x2.max()))

degree = 7
x_1 = plt_x1.ravel()
x_2 = plt_x2.ravel()
n = len(x_1)
x_1 = x_1.reshape(n,1)
x_2 = x_2.reshape(n,1)
plt_array_0 = np.ones([1,n])

for powerNum in range(1, degree):
    for power_index in range(0,powerNum+1):
        plt_new_feat = np.power(x_1,powerNum-power_index) * np.power(x_2,power_index)
        plt_array_0 = np.concatenate((plt_array_0,plt_new_feat.T), axis = 0)

plt_x_mat = np.matrix(plt_array_0)

plt_x_mat.shape,theta_min2.shape



f =  sigmoid(theta_min2 * plt_x_mat)
f =  f.reshape(plt_x1.shape)



plt.contour(plt_x1, plt_x2, f,[0.5],colors='r', linewidth=0.5)
plt.scatter(pos_data2.test1,pos_data2.test2,marker = '+',label = 'QA')
plt.scatter(neg_data2.test1,neg_data2.test2,marker = 'o',label = 'not QA')
plt.xlabel('test1')
plt.ylabel('test2')
plt.title("logstic regression")
plt.legend(loc=3)
plt.show()

效果不错,但是拟合太好会发生过拟合,而正则化可以有效应对。这只是正则化参数为1时的图像,其余参数大家可以试一试再可视化。
在这里插入图片描述

总结

本次实验可以感觉到批量梯度下降需要太多次的迭代了,第一次实验时代价一直没有收敛,呈现的是抖动的心电图,后来发现学习率太大了,慢慢下调到0.001才算稳定,但是收敛速度太慢。其实python中有很多包可以使用,下次我尝试利用一下。再次就是可视化决策边界,我看了很多其他博主的代码,还是一知半解。其次,决定决策边界的不是数据集的分布,而是参数 θ \theta θ的值。

参考链接

可视化非线性决策边界
黄海广博士写的算法代码

  • 1
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值