AcWing1016_最大上升子序列和

本博客介绍如何解决AcWing1016问题,即找到给定序列的最大上升子序列和。通过动态规划方法,利用状态转移方程f(i)=max{f(j)+ai}(1≤j<i)来计算,最终得出最大上升子序列和。代码实现的时间复杂度为O(n^2)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接:AcWing1016.最大上升子序列和

1. 题目描述

一个数的序列 b i b_i bi,当 b 1 < b 2 < … < b S b_1<b_2<…<b_S b1<b2<<bS 的时候,我们称这个序列是上升的。

对于给定的一个序列 ( a 1 , a 2 , … , a N ) (a_1,a_2,…,a_N) (a1,a2,,aN),我们可以得到一些上升的子序列 ( a i 1 , a i 2 , … , a i K ) (a_{i_1},a_{i_2},…,a_{i_K}) (ai1

### AcWing 平台上的动态规划基础题目AcWing 平台上,有许多经典的动态规划(Dynamic Programming, DP)入门题目可以帮助初学者理解掌握这一重要算法技巧。以下是几个适合新手练习的基础题目: #### 题目推荐 1. **01背包问题** 这是一个非常典型的动态规划问题,在给定容量的情况下选择物品使得总价值最大。上述代码展示了如何通过滚动数组来优化空间复杂度[^1]。 2. **最长上升子序列(LIS)** 给定一个整数序列,求其中最长严格递增的连续或不连续子序列长度。此题可以通过构建DP表逐步推导最优解法。 3. **编辑距离(Edit Distance)** 计算两个字符串之间的最小操作次数使其相等,支持插入、删除替换字符三种基本变换方式之一。这类问题是衡量文本相似性的常用方法之一。 4. **矩阵链乘(Matrix Chain Multiplication)** 对于一系列待相乘的小规模方阵而言,不同的括号化方案会带来计算量的巨大差异;利用记忆化搜索或者自底向上的迭代策略能够有效降低时间开销并找到全局最优解路径。 5. **硬币找零(Coin Change Problem)** 设计函数返回凑成指定金额所需的最少数量货币单位组合数目——允许重复选取面额不限制种类范围内的任意一枚钱币参与构成目标数值总额的过程即为此类典型应用实例。 这些题目不仅有助于理解不同类型的动态规划应用场景及其核心思想,而且对于提高编程技能也大有裨益。建议按照由易至难顺序依次尝试解答以上列举出来的习题,并注意总结归纳每道题目的特点规律以便举一反三触类旁通。 ```cpp // 示例:解决01背包问题的核心逻辑片段 for(int i = 1; i <= n; ++i){ for(int j = m; j >= v[i]; --j){ f[j] = std::max(f[j], f[j - v[i]] + w[i]); } } printf("%d\n",f[m]); ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值