(原创重整)浅析卷积

-1.先赞后看,养成习惯

本文最早发布于2019年2月17日,经格式美化后于2021年8月6日同步重发在CSDN、洛谷博客及Gitee网页,转载请注明 出处

0. 写在前面

从粗斜体到分界线中的内容可以跳过。

本文中一些算法的简历:

简写全称中文搞笑
FWTFast Walsh Transformation快速沃尔什变换Fast Wonderful TLE
FFTFast Fourier Transformation快速傅里叶变换Fantastic Fluency TLE
NTTNumber Theory Transformation快速数论变换Natural Talented TLE

1. 卷积的定义

c i = ∑ j ∗ k = i a j × b k c_i= \sum_{j*k=i}{a_j\times b_k} ci=jk=iaj×bk

c c c 称为 a , b a,b a,b 的卷积,当 ∗ * 指不同的运算符时, c c c 有不同的求法,现在分类讨论。

2. 当 ∗ * m a x / m i n max/min max/min

可以通过简单的前/后缀和计算,以下是 m a x max max 卷积的代码:

#include<stdio.h>
int N,a[1000005],b[1000005],c[1000005],A[1000005],B[1000005],C[1000005];
int main(){
  scanf("%d",&N);
  for(int i=1;i<=N;i++)
    scanf("%d",a+i);
  for(int i=1;i<=N;i++)
    scanf("%d",b+i);
  for(int i=1;i<=N;i++){
    A[i]=a[i]+A[i-1];
    B[i]=b[i]+B[i-1];
  }
  for(int i=1;i<=N;i++)
    C[i]=A[i]*B[i];
  for(int i=N;i>=1;i--)
    c[i]=C[i]-C[i-1];
  for(int i=1;i<=N-1;i++)
    printf("%d ",c[i]);
  printf("%d\n",c[N]);
  return 0;
}

m i n min min 卷积与之类似。

为什么它是正确的?

讨论 m a x max max 卷积

c i = ∑ m a x ( j , k ) = i a j × b k c_i=\sum_{max(j,k)=i}{a_j\times b_k} ci=max(j,k)=iaj×bk

c i = a i × b i + ∑ j = 1 i − 1 ( a j × b i + b j × a i ) c_i=a_i\times b_i+\sum_{j=1}^{i-1}{(a_j\times b_i+b_j\times a_i)} ci=ai×bi+j=1i1(aj×bi+bj×ai)

程序中

A i = ∑ j = 1 i a j      B i = ∑ j = 1 i b j A_i=\sum_{j=1}^{i}{a_j}\text{ }\text{ }\text{ }\text{ }B_i=\sum_{j=1}^{i}{b_j} Ai=j=1iaj    Bi=j=1ibj

所以

C i = ∑ j = 1 i ∑ k = 1 i a j × b k C_i=\sum_{j=1}^{i}{\sum_{k=1}^{i}{a_j\times b_k}} Ci=j=1ik=1iaj×bk

易得

c i = C i − C i − 1 = ∑ j = 1 i ( a j × b i ) + ∑ j = 1 i − 1 ( a i × b j ) c_i=C_i-C_{i-1}=\sum_{j=1}^{i}{(a_j\times b_i)}+\sum_{j=1}^{i-1}{(a_i\times b_j)} ci=CiCi1=j=1i(aj×bi)+j=1i1(ai×bj)

与理论答案相符


由此我们可以总结出一点经验,求卷积的流程往往是这样:

  1. 用某种变换将 a i , b i a_i,b_i ai,bi 变成 A i , B i A_i,B_i Ai,Bi

  2. C i = A i × B i C_i=A_i\times B_i Ci=Ai×Bi

  3. 用其逆变换将 C i C_i Ci 变成 c i c_i ci 得到答案

3. 当 ∗ * ∨ / ∧ \vee/\wedge /

在这篇文章中,如果涉及到带 l g N lg_N lgN 复杂度的卷积变换, N = 2 k ( k ∈ N ) N=2^k(k\in\mathbb{N}) N=2k(kN) 。实际实现时在高位补 0 0 0

3.1 用向量表示数

一个 k k k 位二进制数可以表示成一个 k k k 维向量。例如当 k = 3 k=3 k=3 时:

数值向量表示数值向量表示
0 { 0 0 0 } \begin{Bmatrix} 0 & 0 & 0 \end{Bmatrix} {000}4 { 1 0 0 } \begin{Bmatrix} 1 & 0 & 0 \end{Bmatrix} {100}
1 { 0 0 1 } \begin{Bmatrix} 0 & 0 & 1 \end{Bmatrix} {001}5 { 1 0 1 } \begin{Bmatrix} 1 & 0 & 1 \end{Bmatrix} {101}
2 { 0 1 0 } \begin{Bmatrix} 0 & 1 & 0 \end{Bmatrix} {010}6 { 1 1 0 } \begin{Bmatrix} 1 & 1 & 0 \end{Bmatrix} {110}
3 { 0 1 1 } \begin{Bmatrix} 0 & 1 & 1 \end{Bmatrix} {011}7 { 1 1 1 } \begin{Bmatrix} 1 & 1 & 1 \end{Bmatrix} {111}

3.2 ∨ \vee 的实质

我们把用向量表示的数字 ∨ \vee ,例如

3 ∨ 6 = { 0 1 1 } ∨ { 1 1 0 } = { 1 1 1 } = 7 3 \vee 6= \begin{Bmatrix} 0 & 1 & 1 \end{Bmatrix} \vee \begin{Bmatrix} 1 & 1 & 0 \end{Bmatrix}= \begin{Bmatrix} 1 & 1 & 1 \end{Bmatrix}=7 36={011}{110}={111}=7

由此可知 ∨ \vee 的本质是按位 m a x max max ,所以 ∨ \vee 卷积的变换就是按位前缀和。它的逆变换其实是一个脑筋急转弯,只要把循环倒过来,把 + = += += 改成 − = -= = 就可以了。代码如下:

#include<stdio.h>
int n,k,N,a[100005],b[100005],c[100005];
int main(){
  scanf("%d",&n);
  for(int i=0;i<n;i++)
    scanf("%d",a+i);
  for(int i=0;i<n;i++)
    scanf("%d",b+i);
  for(N=1;N<n;N<<=1,k++);
  for(int i=0;i<k;i++)
    for(int j=0;j<N;j++)
      if((j&(1<<i))==0)
        a[j+(1<<i)]+=a[j];
  for(int i=0;i<k;i++)
    for(int j=0;j<N;j++)
      if((j&(1<<i))==0)
        b[j+(1<<i)]+=b[j];
  for(int i=0;i<N;i++)
    c[i]=a[i]*b[i];
  for(int i=k-1;i>=0;i--)
    for(int j=N-1;j>=0;j--)
      if((j&(1<<i))==0)
        c[j+(1<<i)]-=c[j];
  for(int i=0;i<=N-2;i++)
    printf("%d ",c[i]);
  printf("%d\n",c[N-1]);
  return 0;
}

∧ \wedge 卷积与之类似。

4. 当 ∗ * ⨁ \bigoplus

4.1 千里之行,始于足下:N=2

由小学知识可知:
< a 0 , a 1 > ⇒ < a 0 + a 1 , a 0 − a 1 > <a_0,a_1> \Rightarrow <a_0+a_1,a_0-a_1> <a0,a1><a0+a1,a0a1>
< A 0 , A 1 > ⇒ < A 0 + A 1 2 , A 0 − A 1 2 > <A_0,A_1> \Rightarrow <\frac{A_0+A_1}{2},\frac{A_0-A_1}{2}> <A0,A1><2A0+A1,2A0A1>

我们将 a i , b i a_i,b_i ai,bi 带入
C 0 = A 0 × B 0 = ( a 0 + a 1 ) × ( b 0 + b 1 ) = a 0 × b 0 + a 0 × b 1 + a 1 × b 0 + a 1 × b 1 C_0=A_0\times B_0=(a_0+a_1)\times (b_0+b_1)=a_0\times b_0+a_0\times b_1+a_1\times b_0+a_1\times b_1 C0=A0×B0=(a0+a1)×(b0+b1)=a0×b0+a0×b1+a1×b0+a1×b1
C 1 = A 1 × B 1 = ( a 0 − a 1 ) × ( b 0 − b 1 ) = a 0 × b 0 − a 0 × b 1 − a 1 × b 0 + a 1 × b 1 C_1=A_1\times B_1=(a_0-a_1)\times (b_0-b_1)=a_0\times b_0-a_0\times b_1-a_1\times b_0+a_1\times b_1 C1=A1×B1=(a0a1)×(b0b1)=a0×b0a0×b1a1×b0+a1×b1
c 0 = C 0 + C 1 2 = a 0 × b 0 + a 1 × b 1 c_0=\frac{C_0+C_1}{2}=a_0\times b_0+a_1\times b_1 c0=2C0+C1=a0×b0+a1×b1
c 1 = C 0 − C 1 2 = a 0 × b 1 + a 1 × b 0 c_1=\frac{C_0-C_1}{2}=a_0\times b_1+a_1\times b_0 c1=2C0C1=a0×b1+a1×b0

听说是正确的,于是拓展到高维
A i = ∑ j = 0 N ( − 1 ) b i t c o u n t ( i ∧ j ) × a j A_i=\sum_{j=0}^{N}{(-1)^{bitcount(i\wedge j)\times a_j}} Ai=j=0N(1)bitcount(ij)×aj

4.2 一句不是废话的废话

虽然我们已经发现了正解,我们还是从向量的角度看一下。比如
3 ⨁ 6 = { 0 1 1 } ⨁ { 1 1 0 } = { 1 0 1 } = 5 3 \bigoplus 6= \begin{Bmatrix} 0 & 1 & 1 \end{Bmatrix} \bigoplus \begin{Bmatrix} 1 & 1 & 0 \end{Bmatrix}= \begin{Bmatrix} 1 & 0 & 1 \end{Bmatrix}=5 36={011}{110}={101}=5

再写一遍
3 ⨁ 6 = { 0 1 1 } ⨁ { 1 1 0 } = { ( 0 + 1 ) % 2 ( 1 + 1 ) % 2 ( 1 + 0 ) % 2 } = { 1 0 1 } = 5 3 \bigoplus 6= \begin{Bmatrix} 0 & 1 & 1 \end{Bmatrix} \bigoplus \begin{Bmatrix} 1 & 1 & 0 \end{Bmatrix} = \begin{Bmatrix} (0+1) \% 2 & (1+1) \% 2 & (1+0) \% 2 \end{Bmatrix} = \begin{Bmatrix} 1 & 0 & 1 \end{Bmatrix} =5 36={011}{110}={(0+1)%2(1+1)%2(1+0)%2}={101}=5

发现 $ \bigoplus $ 其实是二进制无进位加法。

4.3 具体实现

⨁ \bigoplus 卷积的变换代码与 ∨ / ∧ \vee/\wedge / 卷积的代码略有不同,但 ∨ / ∧ \vee/\wedge / 卷积的代码也可以写成这种形式,具体题意见 洛谷P4717【模板】快速沃尔什变换

#include<stdio.h>
const int p=998244353;
inline int power(int a,int k){
  int ans=1;
  for(;k;a=1LL*a*a%p,k>>=1)
    if(k&1)
      ans=1LL*ans*a%p;
  return ans;
}
int len,N,a[4][300005],b[4][300005];
void FWT(int* a,int op,int flag){
  int x,y;
  if(op==3&&flag==-1){
    for(int i=N>>1;i>0;i>>=1)
      for(int j=0;j<N;j+=i<<1)
        for(int k=0;k<i;k++){
          x=a[j+k];
          y=a[i+j+k];
          a[j+k]=1LL*(x+y)*power(2,p-2)%p;
          a[i+j+k]=(1LL*(x-y)*power(2,p-2)%p+p)%p;
        }
    return;
  }
  for(int i=1;i<N;i<<=1)
    for(int j=0;j<N;j+=i<<1)
      for(int k=0;k<i;k++){
        x=a[j+k];
        y=a[i+j+k];
        if(op==1){
          if(flag==1){
            a[j+k]=x;
            a[i+j+k]=(x+y)%p;
          }
          else{
            a[j+k]=x;
            a[i+j+k]=((y-x)%p+p)%p;
          }
        }
        if(op==2){
          if(flag==1){
            a[j+k]=(x+y)%p;
            a[i+j+k]=y;
          }
          else{
            a[j+k]=((x-y)%p+p)%p;
            a[i+j+k]=y;
          }
        }
        if(op==3){
          a[j+k]=(x+y)%p;
          a[i+j+k]=((x-y)%p+p)%p;
        }
      }
}
int main(){
  scanf("%d",&len);
  N=power(2,len);
  for(int i=0;i<N;i++){
    scanf("%d",a[1]+i);
    a[3][i]=a[2][i]=a[1][i];
  }
  for(int i=0;i<N;i++){
    scanf("%d",b[1]+i);
    b[3][i]=b[2][i]=b[1][i];
  }
  for(int j=1;j<=3;j++){
    FWT(a[j],j,1);
    FWT(b[j],j,1);
  }
  for(int i=0;i<N;i++)
    for(int j=1;j<=3;j++)
      a[j][i]=1LL*a[j][i]*b[j][i]%p;
  for(int j=1;j<=3;j++)
    FWT(a[j],j,-1);
  for(int j=1;j<=3;j++){
    for(int i=0;i<N-1;i++)
      printf("%d ",a[j][i]);
    printf("%d\n",a[j][N-1]);
  }
  return 0;
}

5. 当 ∗ * + + +

公式恐惧症患者请果断按下Ctrl+W以发起正当防卫

5.1 求多项式乘法的新方法

定义 N N N 次多项式 g , h g,h g,h ,我们可以选取 x 0...2 × N x_{0...2\times N} x0...2×N 带入 g , h g,h g,h 得到 G 0...2 × N , H 0...2 × N G_{0...2\times N},H_{0...2\times N} G0...2×N,H0...2×N ,将G和H逐位相乘得到 F F F ,最后将 F F F 消元得到 f f f f = g × h f=g\times h f=g×h

不幸的是,带入多项式需要 O ( n 2 ) O(n^2) O(n2) 。What’s worse,高斯消元需要 O ( n 3 ) O(n^3) O(n3)

5.2 选择带入的数

显然,瓶颈在带入的数的选择上。那我们需要带入怎样的数带入呢?

5.2.1 复数

我们知道, x 2 = − 1 x^2=-1 x2=1 无实数解,但我们定义 i 2 = − 1 i^2=-1 i2=1

复数是所有能够写成 a + i × b ( a , b ∈ R ) a+i\times b(a,b\in \mathbb{R}) a+i×b(a,bR) 的数的集合,该集合记作 C \mathbb{C} C

1 看做 x x x 轴,把 i 看做 y y y 轴,就可以得到一个平面, 人称 也就是复平面,复平面上的点和 C \mathbb{C} C 中的数一一对应。

5.2.2 单位复根

单位圆指在复平面上以原点为圆心,以 1 1 1 为半径的圆。 ω N k \omega_N^k ωNk 1 1 1 对应的点绕原点旋转 k N \frac{k}{N} Nk 圈得到的点所对应的数。特别的,我们将 ω N k \omega_N^k ωNk 称为单位复根。单位复根有以下性质。

5.2.3 单位复根的性质
  1. 对于任意整数 n ⩾ 0 , k ⩾ 0 , d ⩾ 0 n\geqslant0,k\geqslant0,d\geqslant0 n0,k0,d0

ω N k = ω N d k d \omega_{N}^{k}=\omega_{Nd}^{kd} ωNk=ωNdkd

  1. 对于任意整数 n ⩾ 0 , k ⩾ 0 n\geqslant0,k\geqslant0 n0,k0

ω N k = ω 2 N 2 k \omega_{N}^{k}=\omega_{2N}^{2k} ωNk=ω2N2k

  1. 对于任意整数 n ⩾ 0 n\geqslant0 n0

ω N N 2 = − 1 \omega_{N}^{\frac{N}{2}}=-1 ωN2N=1

  1. 对于任意整数 n ⩾ 0 , i ⩾ 0 , j ⩾ 0 n\geqslant0,i\geqslant0,j\geqslant0 n0,i0,j0

ω N i + j = ω N i × ω N j \omega_{N}^{i+j}=\omega_{N}^{i}\times\omega_{N}^{j} ωNi+j=ωNi×ωNj

  1. 对于任意整数 n ⩾ 0 , i ⩾ 0 , j ⩾ 0 n\geqslant0,i\geqslant0,j\geqslant0 n0,i0,j0

ω N i j = ( ω N i ) j \omega_{N}^{ij}=(\omega_{N}^{i})^j ωNij=(ωNi)j

5.3 开始带入!

我们定义将 < ω N 0 , ω N 1 , . . . , ω N N − 1 > <\omega_N^0,\omega_N^1, ... ,\omega_N^{N-1}> <ωN0,ωN1,...,ωNN1> 带入 < a 0 , a 1 , . . . , a N − 1 > <a_0,a_1, ... ,a_{N-1}> <a0,a1,...,aN1> 的结果设为 < A 0 , A 1 , . . . , A N − 1 > <A_0,A_1, ... ,A_{N-1}> <A0,A1,...,AN1>

根据定义得

A i = ∑ j = 0 N − 1 a j × ( ω N i ) j A_i=\sum_{j=0}^{N-1}a_j\times(\omega_N^i)^j Ai=j=0N1aj×(ωNi)j

由性质5得

A i = ∑ j = 0 N − 1 a j × ω N i j A_i=\sum_{j=0}^{N-1}a_j\times\omega_N^{ij} Ai=j=0N1aj×ωNij

我们把 i i i 的定义域从 [ 0 , N − 1 ] [0,N-1] [0,N1] 变成 [ 0 , N 2 − 1 ] [0,\frac{N}{2}-1] [0,2N1]

A i = ∑ j = 0 N − 1 a j × ω N i j A_i=\sum_{j=0}^{N-1}a_j\times\omega_N^{ij} Ai=j=0N1aj×ωNij

A i + N 2 = ∑ j = 0 N − 1 a j × ω N ( i + N 2 ) × j A_{i+\frac{N}{2}}=\sum_{j=0}^{N-1}a_j\times\omega_N^{(i+\frac{N}{2})\times j} Ai+2N=j=0N1aj×ωN(i+2N)×j

奇偶分类

A i = ∑ j = 0 N 2 − 1 a 2 j × ω N 2 i j + ∑ j = 0 N 2 − 1 a 2 j + 1 × ω N i ( 2 j + 1 ) A_i=\sum_{j=0}^{\frac{N}{2}-1}a_{2j}\times\omega_N^{2ij}+\sum_{j=0}^{\frac{N}{2}-1}a_{2j+1}\times\omega_N^{i(2j+1)} Ai=j=02N1a2j×ωN2ij+j=02N1a2j+1×ωNi(2j+1)

= ∑ j = 0 N 2 − 1 a 2 j × ω N 2 i j + ω N i ∑ j = 0 N 2 − 1 a 2 j + 1 ω N 2 i j =\sum_{j=0}^{\frac{N}{2}-1}a_{2j}\times\omega_{\frac{N}{2}}^{ij}+\omega_N^i\sum_{j=0}^{\frac{N}{2}-1}a_{2j+1}\omega_{\frac{N}{2}}^{ij} =j=02N1a2j×ω2Nij+ωNij=02N1a2j+1ω2Nij

A i + N 2 = ∑ j = 0 N 2 − 1 a 2 j × ω N 2 ( i + N 2 ) j + ∑ j = 0 N 2 − 1 a 2 j + 1 × ω N ( i + N 2 ) ( 2 j + 1 ) A_{i+\frac{N}{2}}=\sum_{j=0}^{\frac{N}{2}-1}a_{2j}\times\omega_N^{2(i+\frac{N}{2})j}+\sum_{j=0}^{\frac{N}{2}-1}a_{2j+1}\times\omega_N^{(i+\frac{N}{2})(2j+1)} Ai+2N=j=02N1a2j×ωN2(i+2N)j+j=02N1a2j+1×ωN(i+2N)(2j+1)

= ∑ j = 0 N 2 − 1 a 2 j × ω N 2 i j + ω N i + N 2 ∑ j = 0 N 2 − 1 a 2 j + 1 ω N 2 i j =\sum_{j=0}^{\frac{N}{2}-1}a_{2j}\times\omega_{\frac{N}{2}}^{ij}+\omega_N^{i+\frac{N}{2}}\sum_{j=0}^{\frac{N}{2}-1}a_{2j+1}\omega_{\frac{N}{2}}^{ij} =j=02N1a2j×ω2Nij+ωNi+2Nj=02N1a2j+1ω2Nij

= ∑ j = 0 N 2 − 1 a 2 j × ω N 2 i j − ω N i ∑ j = 0 N 2 − 1 a 2 j + 1 ω N 2 i j =\sum_{j=0}^{\frac{N}{2}-1}a_{2j}\times\omega_{\frac{N}{2}}^{ij}-\omega_N^i\sum_{j=0}^{\frac{N}{2}-1}a_{2j+1}\omega_{\frac{N}{2}}^{ij} =j=02N1a2j×ω2NijωNij=02N1a2j+1ω2Nij

于是我们惊喜地发现,这可以分治做。

为什么需要奇偶分类呢?也许这就是傅里叶的伟大之处吧。

5.4 逆变换

那么FFT的逆变换怎么写呢?

令人惊讶的是,恰有

a i = ∑ j = 0 N − 1 A j × ω N − i j N a_i=\frac{\sum_{j=0}^{N-1}A_j\times\omega_N^{-ij}}{N} ai=Nj=0N1Aj×ωNij

为什么它是正确的?

a i = ∑ j = 0 N − 1 A j × ω N − i j N a_i=\frac{\sum_{j=0}^{N-1}A_j\times\omega_N^{-ij}}{N} ai=Nj=0N1Aj×ωNij

= ∑ j = 0 N − 1 ∑ k = 0 N − 1 a k × ω N j k × ω N − i j N =\frac{\sum_{j=0}^{N-1}\sum_{k=0}^{N-1}a_k\times\omega_N^{jk}\times\omega_N^{-ij}}{N} =Nj=0N1k=0N1ak×ωNjk×ωNij

= ∑ j = 0 N − 1 ∑ k = 0 N − 1 a k × ω N j ( k − i ) N =\frac{\sum_{j=0}^{N-1}\sum_{k=0}^{N-1}a_k\times\omega_N^{j(k-i)}}{N} =Nj=0N1k=0N1ak×ωNj(ki)

= ∑ j = 0 N − 1 ∑ k = 0 N − 1 a k [ i = = k ] N =\frac{\sum_{j=0}^{N-1}\sum_{k=0}^{N-1}a_k[i==k]}{N} =Nj=0N1k=0N1ak[i==k]

= N × a i N =\frac{N\times a_i}{N} =NN×ai

= a i =a_i =ai


5.5 蝴蝶变换

我们将 N = 8 N=8 N=8 的分治情况手动模拟一下,可以得到:

区间大小 i d 0 id_0 id0 i d 1 id_1 id1 i d 2 id_2 id2 i d 3 id_3 id3 i d 4 id_4 id4 i d 5 id_5 id5 i d 6 id_6 id6 i d 7 id_7 id7
801234567
402461357
204261537
104261537

把这个表格用二进制描述

区间大小 i d 0 id_0 id0 i d 1 id_1 id1 i d 2 id_2 id2 i d 3 id_3 id3 i d 4 id_4 id4 i d 5 id_5 id5 i d 6 id_6 id6 i d 7 id_7 id7
8000001010011100101110111
4000010100110001011101111
2000100010110001101011111
1000100010110001101011111

我们发现表格的第一行和最后一行二进制是反转的,这样我们就发现了 F F T FFT FFT 的非递归写法,代码如下:

#include<math.h>
#include<stdio.h>
#include<algorithm>
using namespace std;
const double pi=acos(-1.0);
int n,m,res=0,N=1,len,revers[2097160];
long long ans[2097160];
int i,j,k,l;
struct node{
  double x,y;
  node(double x=0,double y=0):x(x),y(y){}
  node operator*(const node &b){
    return node(x*b.x-y*b.y,x*b.y+y*b.x);
  }
  node operator+(const node &b){
    return node(x+b.x,y+b.y);
  }
  node operator-(const node &b){
    return node(x-b.x,y-b.y);
  }
}a[2097160],b[2097160],T,t,x,y;
void FFT(node *a,double flag){
  for(i=0;i<N;i++)
    if(i<revers[i])
      swap(a[i],a[revers[i]]);
  for(j=1;j<N;j<<=1){
    T=node(cos(pi/j),flag*sin(pi/j));
    for(k=0;k<N;k+=(j<<1)){
      t=node(1,0);
      for(l=0;l<j;l++,t=t*T){
        x=a[k+l],y=t*a[k+j+l];
        a[k+l]=x+y;
        a[k+j+l]=x-y;
      }
    }
  }
}
int main(){
  scanf("%d%d",&n,&m);
  n++;
  m++;
  for(i=0;i<n;i++)	
    scanf("%lf",&a[i].x);
  for(i=0;i<m;i++)
    scanf("%lf",&b[i].x);
  for(;N<max(n,m)<<1;N<<=1,len++);
  for(i=0;i<=N;i++)
    revers[i]=(revers[i>>1]>>1)|((i&1)<<(len-1));
  FFT(a,1);
  FFT(b,1);
  for(i=0;i<=N;i++)
    a[i]=a[i]*b[i];
  FFT(a,-1);
  for(i=0;i<=N;i++)
    ans[i]+=(long long)(a[i].x/N+0.5);
  for(;!ans[N]&&N;N--);
  N++;
  for(i=0;i<n+m-2;i++)
    printf("%lld ",ans[i]);
  printf("%lld\n",ans[n+m-2]);
  return 0;
}

5.6 精度问题

把上面的代码加入模操作后提交到 洛谷P4245【模板】任意模数NTT 里去发现光荣WA

然后就发现 F F T FFT FFT 有精度问题,那么如何避免呢?

5.6.1 原根

如果 g g g 0 0 0 ~ ϕ ( p ) − 1 \phi(p)-1 ϕ(p)1 在模 p p p 意义下正好遍历了 1 1 1 ~ p − 1 p-1 p1 中与 p p p 互质的 ϕ ( p ) \phi(p) ϕ(p) 个数,那么称 g g g p p p 的原根。

p p p 为质数时,我们发现如果用 g p − 1 N g^\frac{p-1}{N} gNp1 代替单位复根(记为 g N g_N gN ),它满足单位复根的所有性质:

  1. 对于任意整数 n ⩾ 0 , k ⩾ 0 , d ⩾ 0 n\geqslant0,k\geqslant0,d\geqslant0 n0,k0,d0

g N k = g N d k d g_{N}^{k}=g_{Nd}^{kd} gNk=gNdkd

  1. 对于任意整数 n ⩾ 0 , k ⩾ 0 n\geqslant0,k\geqslant0 n0,k0

g N k = g 2 N 2 k g_{N}^{k}=g_{2N}^{2k} gNk=g2N2k

  1. 对于任意整数 n ⩾ 0 n\geqslant0 n0

g N N 2 = − 1 g_{N}^{\frac{N}{2}}=-1 gN2N=1

  1. 对于任意整数 n ⩾ 0 , i ⩾ 0 , j ⩾ 0 n\geqslant0,i\geqslant0,j\geqslant0 n0,i0,j0

g N i + j = g N i × g N j g_{N}^{i+j}=g_{N}^{i}\times g_{N}^{j} gNi+j=gNi×gNj

  1. 对于任意整数 n ⩾ 0 , i ⩾ 0 , j ⩾ 0 n\geqslant0,i\geqslant0,j\geqslant0 n0,i0,j0

g N i j = ( g N i ) j g_{N}^{ij}=(g_{N}^{i})^j gNij=(gNi)j

5.6.2 能选的质数

一般情况下有三个质数可选:

  • 469762049 = 7 × 2 26 + 1 469762049=7\times 2^{26}+1 469762049=7×226+1

  • 998244353 = 119 × 2 23 + 1 998244353=119\times 2^{23}+1 998244353=119×223+1

  • 1004535809 = 749 × 2 21 + 1 1004535809=749\times 2^{21}+1 1004535809=749×221+1

p p p 取上面几个质数时, g = 3 g=3 g=3 p − 1 p-1 p1 中有很多 2 2 2 的因子, F F T FFT FFT N N N 又都是 2 2 2 的次幂,所以上面三个质数一定要记下来。

代码如下:

#include<stdio.h>
#include<algorithm>
using namespace std;
const long long p=998244353,g=3,invg=332748118;
int n,m,res=0,N=1,len,revers[2097160];
long long ans[2097160],a[2097160],b[2097160],T,t,x,y;
int i,j,k,l;
inline long long power(long long a,long long k,long long p){
  long long ans=1,t=a;
  for(;k;k>>=1,t=t*t%p)
    if(k&1)
      ans=ans*t%p;
  return ans;
}
void NTT(long long *a,long long flag){
  for(i=0;i<N;i++)
    if(i<revers[i])
      swap(a[i],a[revers[i]]);
  for(j=1;j<N;j<<=1){
    T=power(flag==1?g:invg,(p-1)/j/2,p);
    for(k=0;k<N;k+=(j<<1)){
      t=1;
      for(l=0;l<j;l++,t=t*T%p){
        x=a[k+l],y=t*a[k+j+l]%p;
        a[k+l]=(x+y)%p;
        a[k+j+l]=((x-y)%p+p)%p;
      }
    }
  }
}
int main(){
  scanf("%d%d",&n,&m);
  n++;
  m++;
  for(i=0;i<n;i++){
    scanf("%lld",a+i);
    a[i]=a[i]%p;
  }
  for(i=0;i<m;i++){
    scanf("%lld",b+i);
    b[i]=b[i]%p;
  }
  for(;N<max(n,m)<<1;N<<=1,len++);
  for(i=0;i<=N;i++)
    revers[i]=(revers[i>>1]>>1)|((i&1)<<(len-1));
  NTT(a,1);
  NTT(b,1);
  for(i=0;i<=N;i++)
    a[i]=a[i]*b[i]%p;
  NTT(a,-1);
  for(i=0;i<=N;i++)
    ans[i]=a[i]*power(N,p-2,p)%p;
  for(i=0;i<n+m-2;i++)
    printf("%lld ",ans[i]);
  printf("%lld\n",ans[n+m-2]);
  return 0;
}

5.7 换个角度看 ⨁ \bigoplus 卷积

我们再回忆一下4.2节的内容,我们在做 ⨁ \bigoplus 卷积时,其实可以做 l g N lg_N lgN F F T FFT FFT ,然后又因为 ω 2 0 = 1 \omega_2^0=1 ω20=1 ω 2 1 = − 1 \omega_2^1=-1 ω21=1,就可以得到4.1节的结论了。

5.8 FFT再拓展

在洛谷上搜索FFT会发现还有一道 洛谷P4245【模板】任意模数NTT ,怎么lòng?
我们定三个质数做模数,一般是5.6.2节中的三个,分别进行 N T T NTT NTT,最后用 C R T CRT CRT 强制求出解,注意爆long long(对,你没看错,不是爆int), C R T CRT CRT 时模的勤劳一点。

贴代码:

#include<cstdio>
#include<string.h>
#include<algorithm>
using namespace std;
int mod;
inline int power(int a,int k,int p){
  int ans;
  for(ans=1;k;k>>=1,a=1LL*a*a%p)
    if(k&1)
      ans=1LL*ans*a%p;
  return ans;
}
const int p[3]={469762049,998244353,1004535809},g=3;
class longint{
  private:
    int A,B,C;
    static longint reduce(const longint &x){
      return longint(x.A+(x.A>>31&p[0]),x.B+(x.B>>31&p[1]),x.C+(x.C>>31&p[2]));
    }
  public:
    explicit longint(){}
    explicit longint(int x){
      A=B=C=x;
    }
    explicit longint(int x,int y,int z){
      A=x;
      B=y;
      C=z;
    }
    friend longint operator+(const longint &lsh,const longint &rsh){
      return reduce(longint(lsh.A+rsh.A-p[0],lsh.B+rsh.B-p[1],lsh.C+rsh.C-p[2]));
    }
    friend longint operator-(const longint &lsh,const longint &rsh){
      return reduce(longint(lsh.A-rsh.A,lsh.B-rsh.B,lsh.C-rsh.C));
    }
    friend longint operator*(const longint &lsh,const longint &rsh){
      return longint(1LL*lsh.A*rsh.A%p[0],1LL*lsh.B*rsh.B%p[1],1LL*lsh.C*rsh.C%p[2]);
    }
    int get(){
      long long x=1LL*(B-A+p[1])%p[1]*power(p[0],p[1]-2,p[1])%p[1]*p[0]+A;
      return (1LL*(C-x%p[2]+p[2])%p[2]*power(1LL*p[0]*p[1]%p[2],p[2]-2,p[2])%p[2]*(1LL*p[0]*p[1]%mod)+x)%mod;
    }
};
const int Array_Limit=1<<18;
int N,len,revers[Array_Limit|5];
longint exp[Array_Limit|5];
void init(int n){
  len=-1;
  N=1;
  while(N<n){
    N<<=1;
    len++;
  }
  for(int i=1;i<=N;i++)
    revers[i]=revers[i>>1]>>1|(i&1)<<len;
  longint t(power(g,(p[0]-1)/N,p[0]),power(g,(p[1]-1)/N,p[1]),power(g,(p[2]-1)/N,p[2]));
  exp[0]=longint(1);
  for(longint *i=exp;i!=exp+N;i++)
    *(i+1)=*i*t;
}
void NTT(longint *a,int flag){
  for(int i=1;i<Array_Limit;i++)
    if(i<revers[i])
      swap(a[i],a[revers[i]]);
  for(int i=1;i<N;i<<=1){
    int t=N/i>>1;
    for(int j=0;j<N;j+=i<<1)
      for(int k=0;k<i;k++){
        longint x=flag==1?exp[t*k]:exp[N-t*k],y=a[i+j+k]*x;
        x=a[j+k];
        a[j+k]=x+y;
        a[i+j+k]=x-y;
      }
  }
  if(flag==-1){
    longint inv_N(power(N,p[0]-2,p[0]),power(N,p[1]-2,p[1]),power(N,p[2]-2,p[2]));
    for(longint *i=a;i!=a+N;i++)
      *i=(*i)*inv_N;
  }
}
int n,m;
longint a[Array_Limit|5],b[Array_Limit|5];
int main(){
  scanf("%d%d%d",&n,&m,&mod);
  n++;
  m++;
  for(int i=0,x;i<n;i++){
    scanf("%d",&x);
    a[i]=longint(x%mod);
  }
  for(int i=0,x;i<m;i++){
    scanf("%d",&x);
    b[i]=longint(x%mod);
  }
  init(n+m);
  NTT(a,1);
  NTT(b,1);
  for(int i=0;i<N;i++)
    a[i]=a[i]*b[i];
  NTT(a,-1);
  for(int i=0;i<n+m-2;i++)
    printf("%d ",a[i].get());
  printf("%d\n",a[n+m-2].get());
  return 0;
}

6. 写在最后

初稿成型时Up只有初一,如今重整时可能会有一些没发现的错误,如有欢迎指正。

  • 13
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 11
    评论
评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值