第二章:2.3 卷积定义(卷积积分与卷积和)

首先我们来看一下卷积的定义:Convolution

对于一个线性时不变系统,如果我们知道他的单位冲击响应信号h(t),那么这个系统的零状态输出y(t)就可以通过输入信号x(t)卷积系统的单位冲击响应h(t)而获得

对于连续和离散的,他都有两种等效的形式,这表明卷积运算是满足乘法的交换律的。所不同的是对于连续系统我们称之为卷积运算,对于离散系统我们称之为卷积和运算

这里写图片描述

如果系统不是零状态的,那么我们如何求解呢?

如果是这样的话,那么系统的零状态响应通过卷积运算来求,系统的零输入响应通过求解来获得。我们知道对于系统的零输入对应的是系统的齐次解,系统在零时刻没有跳变,这样就避免了对于跳变的考虑

这里写图片描述

关于因果信号的积分上下限的确定如下,关于第二条,因为自变量前面有一个负号,所以信号要发生反转。所以是这样的积分区间。如图所示,记住f2的积分区间

这里写图片描述

这里写图片描述

这里写图片描述

这里写图片描述

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Einstellung

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值