几种简单卷积计算方法实例-Faltung

1.连续函数的卷积

图1

1.1 将图1中的两个函数的表达式写出

x ( t ) = { 1 ,   0 < t < 3 T 0 , 其 他 x(t)= \begin{cases} 1, & \ 0<t<3T\\ 0, &其他 \end{cases} x(t)={1,0, 0<t<3T
h ( t ) = { t 2 T , 0 < t < 2 T 0 , 其 他 h(t)= \begin{cases} \cfrac t{2T} , &0<t<2T\\ 0, &其他 \end{cases} h(t)=2Tt,0,0<t<2T

1.2 分类讨论

情 况 1 情况1 1
在这里插入图片描述
显 然 y ( t ) = 0 。 显然 y(t)=0。 y(t)=0

情 况 2 情况2 2
在这里插入图片描述
y ( t ) = ∫ 0 t x ( τ ) h ( t − τ ) d τ = 1 2 T ∫ 0 t ( t − τ ) d τ = t 2 4 T y(t)=\int_0^tx(\tau)h(t-\tau)d{\tau}=\cfrac1{2T}\int_0^t(t-\tau)d\tau=\cfrac {t^2}{4T} y(t)=0tx(τ)h(tτ)dτ=2T10t(tτ)dτ=4Tt2

注 意 看 两 个 函 数 重 叠 部 分 , 此 时 t < 0 时 卷 积 结 果 为 0 , 所 以 积 分 下 限 为 0 , 积 分 上 限 为 不 断 移 动 的 函 数 h ( t − τ ) 注意看两个函数重叠部分,{此时t<0时}卷积结果为0,所以积分下限为0,积分上限为不断移动的函{数h(t-\tau)} t<000h(tτ)

情 况 3 情况3 3
在这里插入图片描述
y ( t ) = ∫ t − 2 T t x ( τ ) h ( t − τ ) d τ = 1 2 T ∫ t − 2 T t ( t − τ ) d τ = T y(t)=\int_{t-2T}^tx(\tau)h(t-\tau)d{\tau}=\cfrac1{2T}\int_{t-2T}^t(t-\tau)d{\tau}=T y(t)=t2Ttx(τ)h(tτ)dτ=2T1t2Tt(tτ)dτ=T

情 况 4 情况4 4
在这里插入图片描述
y ( t ) = ∫ t − 2 T 3 T x ( τ ) h ( t − τ ) d τ = 1 2 T ∫ t − 2 T 3 T ( t − τ ) d τ = 1 4 T ( − 5 T 2 + 6 t T − t 2 ) y(t)=\int_{t-2T}^{3T}x(\tau)h(t-\tau)d{\tau}=\cfrac1{2T}\int_{t-2T}^{3T}(t-\tau)d{\tau}=\cfrac1{4T}(-5T^2+6tT-t^2) y(t)=t2T3Tx(τ)h(tτ)dτ=2T1t2T3T(tτ)dτ=4T1(5T2+6tTt2)

情 况 5 情况5 5
在这里插入图片描述
y ( t ) = 0 。 y(t)=0。 y(t)=0

此 外 连 续 函 数 卷 积 还 可 以 借 助 傅 里 叶 变 换 、 拉 普 拉 斯 变 换 、 卷 积 的 各 种 性 质 求 解 。 此外连续函数卷积还可以借助傅里叶变换、拉普拉斯变换、卷积的各种性质求解。

2.离散函数的卷积

2.1 表格法(Papierstreifenmethode)

在这里插入图片描述
当 数 列 f n , h n 和 y n 的 长 度 分 别 为 L f , L h 和 L y 时 , 那 么 L y = L f + L h − 1 。 当数列f_n,h_n和y_n的长度分别为L_f,L_h和L_y时,那么L_y=L_f+L_h-1。 fn,hnynLf,LhLyLy=Lf+Lh1

2.2 借助冲激信号

D i r a c − I m p l u s   δ k ( n ) = { 1 , n = 0 0 , 其 他 Dirac-Implus\ \delta_k(n)= \begin{cases} 1, & n=0\\ 0, &其他 \end{cases} DiracImplus δk(n)={1,0,n=0
在这里插入图片描述

2.3 借助Z变换

单 边 Z 变 换 , F ( z ) = 单边Z变换,F(z)= ZF(z)= ∑ n = 0 ∞ \sum_{n=0}^\infty n=0 f n z − n f_nz^{-n} fnzn

Z { δ ( n ) } = 1 , 延 迟 定 理 Z { f n − k } = z − k [ F ( z ) + Z\{\delta(n)\}=1,延迟定理Z\{f_{n-k}\}=z^{-k}[F(z)+ Z{δ(n)}=1,Z{fnk}=zk[F(z)+ ∑ m = 1 k f − m z m \sum_{m=1}^kf_{-m}z^m m=1kfmzm]
在这里插入图片描述

总 结 : 设 数 列 f n 和 h n 分 别 通 过 连 续 信 号 f ( t ) 和 h ( t ) 理 想 采 样 获 得 y ( t ) = f ( t ) ∗ h ( t ) ≠ y n = f n ∗ h n , 因 为 在 连 续 卷 积 中 , 采 样 点 之 间 的 函 数 值 也 会 影 响 结 果 。 总结:设数列f_n和h_n分别通过连续信号f(t)和h(t)理想采样获得y(t)=f(t)\ast h(t)\neq y_n=f_n\ast h_n,因为在连续卷积中,采样点之间的函数值也会影响结果。 fnhnf(t)h(t)y(t)=f(t)h(t)=yn=fnhn

2.3 循环卷积(Zyklische Faltung)

通 常 所 说 的 卷 积 都 为 线 性 卷 积 ( L i n e a r e   F a l t u n g ) 两 个 函 数 的 循 环 卷 积 是 由 他 们 的 周 期 延 伸 所 来 定 义 的 。 通常所说的卷积都为线性卷积(Lineare\ Faltung)两个函数的循环卷积是由他们的周期延伸所来定义的。 线Lineare Faltung 周 期 延 伸 意 思 是 把 原 本 的 函 数 平 移 某 个 周 期 T 的 整 数 倍 后 再 全 部 加 起 来 , 所 产 生 的 新 函 数 。 循 环 卷 积 要 借 周期延伸意思是把原本的函数平移某个周期 T 的整数倍后再全部加起来,所产生的新函数。循环卷积要借 T
助 离 散 傅 里 叶 变 换 ( D F T ) 助离散傅里叶变换(DFT) (DFT)

x ( n ) ∘ — ∙ X D F T ( k ) x(n){\circ—\bullet} X_{DFT}(k) x(n)XDFT(k)
Δ Ω = 2 π N W N = e − j 2 π N \Delta\Omega=\cfrac{2\pi}N \qquad\qquad\qquad\qquad W_N=e^{-j\cfrac{2\pi}N} ΔΩ=N2πWN=ejN2π

X D F T ( k ) = ∑ n = 0 N − 1 x ( n ) e − j Δ Ω k ⋅ n = ∑ n = 0 N − 1 x ( n ) W N k n                   只 在 k = 0 , 1 , . . . , N − 1 定 义 X_{DFT}(k)=\sum_{n=0}^{N-1}x(n)e^{-j\Delta\Omega k\cdot n}=\sum_{n=0}^{N-1}x(n)W_N^{kn} \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ 只在k=0,1,...,N-1定义 XDFT(k)=n=0N1x(n)ejΔΩkn=n=0N1x(n)WNkn                 k=0,1,...,N1
在这里插入图片描述

  • 6
    点赞
  • 34
    收藏
    觉得还不错? 一键收藏
  • 1
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值