GPS定位为什么需要4颗以上卫星?

本文介绍了GPS定位的基本原理,通过四个方程式确定三维位置,并解释了由于时间同步问题导致的误差。解决误差的方法是利用更多的卫星进行定位。GPS接收器至少需要接收到四颗卫星的信号才能完成3D定位。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

二话不说,直接上图在这里插入图片描述
首先可以看到两个球面可以确定一个圆,三个球面(一个球面+一个圆)可以确定两个点。如上图所示。排除不在地面上的位置,就可以准确地得到我们的位置信息。

假设t时刻在地面待测点上安置GPS接收机,可以测定GPS信号到达接收机的时间△t,再加上接收机所接收到的卫星星历等其它数据可以确定以下四个方程式:

在这里插入图片描述上述四个方程式中x、y、z为待测点坐标,Vto为接收机的钟差为未知参数,其中di=c△ti,(i=1、2、3、4),di分别为卫星i到接收机之间的距离,△ti 分别为卫星i的信号到达接收机所经历的时间,xi 、yi 、zi为卫星i在t时刻的空间直角坐标,Vti为卫星钟的钟差,c为光速。

再来说一说误差问题:如果接收机与gps系统时间同步,则tr-t1,可以得到传播的时间,则距离r=c*∆t,但是在现实中却无法实现,因此这就是误差问题!而解决问题的方法就是多加一个卫星从而更好的定位距离问题!

GPS接收器在仅接收到三颗卫星的有效信号的情况下只能确定二维坐标即经度和纬度,只有收到四颗或四颗以上的有效GPS卫星信号时,才能完成包含高度的3D定位。

基于python实现的粒子群的VRP(车辆配送路径规划)问题建模求解+源码+项目文档+算法解析,适合毕业设计、课程设计、项目开发。项目源码已经过严格测试,可以放心参考并在此基础上延申使用,详情见md文档 算法设计的关键在于如何向表现较好的个体学习,标准粒子群算法引入惯性因子w、自我认知因子c1、社会认知因子c2分别作为自身、当代最优解和历史最优解的权重,指导粒子速度和位置的更新,这在求解函数极值问题时比较容易实现,而在VRP问题上,速度位置的更新则难以直接采用加权的方式进行,一个常见的方法是采用基于遗传算法交叉算子的混合型粒子群算法进行求解,这里采用顺序交叉算子,对惯性因子w、自我认知因子c1、社会认知因子c2则以w/(w+c1+c2),c1/(w+c1+c2),c2/(w+c1+c2)的概率接受粒子本身、当前最优解、全局最优解交叉的父代之一(即按概率选择其中一个作为父代,不加权)。 算法设计的关键在于如何向表现较好的个体学习,标准粒子群算法引入惯性因子w、自我认知因子c1、社会认知因子c2分别作为自身、当代最优解和历史最优解的权重,指导粒子速度和位置的更新,这在求解函数极值问题时比较容易实现,而在VRP问题上,速度位置的更新则难以直接采用加权的方式进行,一个常见的方法是采用基于遗传算法交叉算子的混合型粒子群算法进行求解,这里采用顺序交叉算子,对惯性因子w、自我认知因子c1、社会认知因子c2则以w/(w+c1+c2),c1/(w+c1+c2),c2/(w+c1+c2)的概率接受粒子本身、当前最优解、全局最优解交叉的父代之一(即按概率选择其中一个作为父代,不加权)。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值