1. 基本参数概念
Θ:识别框架,由互不相容的命题组成,包含一个问题的所有答案,但只有一个是正确的;
BPA: m函数|各命题的信任程度 |基本概率分配;
m(A): 基本可信度,对命题A的信度大小;
Bel(A): 信任函数,对命题A的信任程度;
Pl(A): 似然函数,对命题A的最大信任程度。
关于Bel(A)和Pl(A)概念的解释
区间[0,Bel(A)],表示A证据确凿区间;
区间[0,Pl(A)],表示A的可能区间;
区间[Pl(A),1],表示A的不可能区间;
区间[Bel(A),Pl(A)],表示A的不确定区间。
2. 基本参数公式
Bel(Belief function)函数定义:
Pl(Plausibility function)函数定义:
Dempster合成规则:
对于n个mass函数,Dempster合成规则如下:
其中K为归一化常数,取值为:
3. 大白话解释
看了很多篇文章,终于搞懂了,用大白话和一个案例来解释一下这个算法流程。
- 一个大馒头被偷吃了,有两个怀疑对象小黄和小超,老师A认为小黄偷吃概率0.3,小超偷吃概率0.6,他俩都偷吃的概率0.1,老师B认为小黄偷吃0.2,小超偷吃概率0.7,他俩都偷吃的概率0.1;我们上述定义的Θ这个值就是[小黄,小超],根据这些概率列一个表格;
老师A | 老师B | AB老师融合概率 | |
---|---|---|---|
小黄 | 0.3 | 0.2 | |
小超 | 0.6 | 0.7 | |
小黄和小超 | 0.1 | 0.1 |
- 现在我们首先计算K值;
K大白话来说:在小黄视角,两个老师都认为小黄偷吃了,概率相乘即可。在每个视角都计算值相加即可。通俗点就是说两个老师认为的事件相交得到的结果不是空集。
小黄偷吃视角 = 0.3*0.2 + 0.3*0.1 = 0.09
小超偷吃视角 = 0.6*0.7 + 0.6*0.1 = 0.48
小黄和小超一起偷吃视角 = 0.1*0.2 + 0.1*0.7 + 0.1*0.1 = 0.1
K = 0.09+0.48+0.1 = 0.67
- 计算小黄偷吃的AB老师融合概率(组合mass函数);
Dempster合成规则 这个公式
大白话来说:我们想求小黄偷吃的融合概率,那么我们就将两个老师都认为小黄吃了的概率相乘,通俗点就是说两个老师认为的事件相交得到的结果是小黄偷吃了。
(1/K)*(0.3*0.2 + 0.3*0.1 + 0.1*0.2) = 0.164(约等于)
- 计算小超偷吃的AB老师融合概率(组合mass函数);
(1/K)*(0.6*0.7 + 0.6*0.1 + 0.1*0.7) = 0.821(约等于)
- 计算他俩都偷吃的AB老师融合概率(组合mass函数);
(1/K)*(0.1*0.1) = 0.015(约等于)
- 将计算出来的融合概率填充至表格;
老师A | 老师B | AB老师融合概率 | |
---|---|---|---|
小黄 | 0.3 | 0.2 | 0.164 |
小超 | 0.6 | 0.7 | 0.821 |
小黄和小超 | 0.1 | 0.1 | 0.015 |
- 计算信任函数和似然函数;
小黄:
Bel(小黄) = 0.164 Pl(小黄) = 0.164 + 0.015 = 0.179
小超:
Bel(小超) = 0.821 Pl(小超) = 0.821 + 0.015 = 0.836
[Bel,Pl]就是信任区间
- 通过最终融合概率得出最后结果。