我们生活在一个3维立体的世界里,如果要定位到我们所在的位置,就需要准确的描述出所在位置的经度,维度和高度。
这样就存在三个未知数,那就起码得三组方程才能确定唯一解,那为什么不是3个卫星,而是最少需要4个卫星呢,这就涉及到GPS定位的原理了。
GPS定位的原理:基于三角测量法
由上图我们可能得到如下方程:
(x-x1)^2+(y-y1)^2+(z-z1)^2 = (c*dt1)^2
(x-x2)^2+(y-y2)^2+(z-z2)^2 = (c*dt2)^2
(x-x3)^2+(y-y3)^2+(z-z3)^2 = (c*dt3)^2
其中,dt1 dt2 dt3是三个卫星相对终端设置的收发时间差,卫星上一般用的是原子钟所以可以认为精度很高,但是终端设置的时间误差就会比较大。所以在这里,我们只能把终端的时间当做一个未知数来处理,这就出现了第四个未知数。
这也是为什么至少需要四个卫星的原因了。有四个未知数,就至少需要4组方程。
所以,在这里有必要引入第四个卫星。
(x-x4)^2+(y-y4)^2+(z-z4)^2 = (c*dt4)^2
通过求解上面的方程,我们就能得到当前位置的值:x,y,z,从而得到定位位置。