想起“楼教主”的话:我不会这道题,但是AC没问题。
对这道题理解不透彻,大致理解是这样的:因为小孩不喜欢猫就喜欢狗,所以喜欢猫与喜欢狗的小孩儿之间存在矛盾关系,而喜欢猫和喜欢狗的小孩儿之间没有矛盾关系,这符合二分图的概念。
建图:当一个小孩儿喜欢的动物被另一个小孩儿不喜欢,这两个小孩之间就是矛盾的,在他们之间连接一条边。再求图的最大独立集,具体为什么求最大独立集就行我还没弄太清楚..囧..
公式: 最大独立集 = 节点数 - 最大匹配, 匈牙利求最大匹配即可。
代码如下:
#include <iostream>
#include <string>
using namespace std;
const int pMax = 501;
bool map[pMax][pMax], vis[pMax];
int match[pMax], r, t;
bool path(int sta)
{
int i;
for(i = 0; i < t; i++)
if(!vis[i] && map[sta][i])
{
vis[i] = true;
if(match[i] == -1 || path(match[i]))
{
match[i] = sta;
return true;
}
}
return false;
}
int main()
{
int N, M, P;
int i, j;
string p1[pMax][2], p2[pMax][2];
string tmp1, tmp2;
while(cin >> N >> M >> P)
{
r = t = 0;
for(i = 1; i <= P; i++)
{
cin >> tmp1 >> tmp2;
if(tmp1[0] == 'C')
{
p1[r][0] = tmp1;
p1[r++][1] = tmp2;
}
else
{
p2[t][0] = tmp1;
p2[t++][1] = tmp2;
}
}
memset(match, -1, sizeof(match));
memset(map, false, sizeof(map));
for(i = 0; i < r; i++)
for(j = 0; j < t; j++)
if(p1[i][0] == p2[j][1] || p1[i][1] == p2[j][0])
map[i][j] = true;
int result = 0;
for(i = 0; i < r; i++)
{
memset(vis, false, sizeof(vis));
if(path(i))
result++;
}
cout << P-result << endl;
}
return 0;
}