青蛙的约会(扩展欧几里德定理)

扩展欧几里得定理

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然

存在整数对 x,y ,使得 gcd(a,b)=ax+by。

求解 x,y的方法的理解

设 a>b。

1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;

2,a>b>0 时

设 ax1+ by1= gcd(a,b);

bx2+ (a mod b)y2= gcd(b,a mod b);

根据朴素的欧几里得原理有 gcd(a,b) = gcd(b,a mod b);

则:ax1+ by1= bx2+ (a mod b)y2;

即:ax1+ by1= bx2+ (a - [a / b] * b)y2=ay2+ bx2- [a / b] * by2;

说明: a-[a/b]*b即为mod运算。[a/b]代表取小于a/b的最大整数。

也就是ax1+ by1 == ay2+ b(x2- [a / b] *y2);

根据恒等定理得:x1=y2; y1=x2- [a / b] *y2;

这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.

 

解题思路:经过k圈后相遇,设时间为t,则:

                   x+mt = y + nt + kl;

                   x - y = (n - m)t + kl;

                   那么就有 a = n-m, b = l, c = x-y;

故而当 gc = gcd(a, b) 是c的约数,那么这个方程有解,否则无解

一组解为x0 = x*c/gc; y0 = y*c/gc;

通解为x = x0 + b/gc*t; y = y0-a*gc*t;

#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
typedef long long ll;
int exgcd(ll a,ll b,ll &x,ll &y)
{
    if(b == 0)
    {
        x = 1,y = 0;
        return a;
    }
    int r = exgcd(b,a%b,x,y);
    int t = x;
    x = y;
    y = t-a/b*y;
    return r;
}
int main()
{
    ll X,Y,m,n,l,x,y;
    while(~scanf("%lld %lld %lld %lld %lld",&X,&Y,&m,&n,&l))
    {
        ll a = n-m,b = l,c = X-Y;
        ll gc = exgcd(a,b,x,y);
        if(c%gc) //判断是否有解
            printf("Impossible\n");
        else
        {
            c /= gc;
            ll t = (c*x%b+b)%b; //求一组解
            printf("%lld\n",t);
        }
    }
    return 0;
}
    
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值