青蛙的约会
时间限制: 1 Sec 内存限制: 128 MB
题目描述
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
输入
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
输出
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行”Impossible”
样例输入
1 2 3 4 5
样例输出
4
直接套用扩展欧几里得函数,得到一组解x,y。由于问题是问最少跳多少次,于是只有x是我们需要的信息。那么再想,x是最小的吗?
答案是可能不是!那么如何得到最小解呢?
- 我们考虑x的所有解的式子:x=x0+b/d*t。
- x0是我们刚刚求到的,很显然右边是有个单调函数,当t为某一个与x正负性质相反的数时,可以得到最小的x。 令x的正负性质为正,那么x=x0-b/d*t1 (t1==-t)。令x==0,那么t=x0*d/b,最小的x等于x0减去t*b/d。这里得到的x可能是负数,如果是负数,我们再为它加上一个b/d即是所求答案了!
var
x1,y1,x,y,m,n,l,a,b,c,t,v:int64;
function gcd(a,b:int64):int64;
begin
if b=0
then gcd:=a
else gcd:=gcd(b,a mod b);
end;
procedure exgcd(a,b:int64;var x,y:int64);
var k:int64;
begin
if b=0
then begin x:=1; y:=0; end
else begin exgcd(b,a mod b,x,y); k:=x; x:=y; y:=k-y*(a div b); end;
end;
begin
readln(x1,y1,m,n,l);
a:=n-m;
c:=x1-y1;
b:=l;
t:=gcd(a,b);
if c mod t<>0
then writeln('Impossible')
else
begin
exgcd(a,b,x,y);
x:=x*c div t;
v:=x*t div b;
x:=x-v*b div t;
x:=(x+l) mod l;
if x<0 then x:=x+b div t;
writeln(x);
end;
end.