打卡第三十天:用最少数量的箭引爆气球、无重叠区间、划分字母区间

一、用最少数量的箭引爆气球

题目

文章

视频

局部最优:当气球出现重叠,一起射,所用弓箭最少。全局最优:把所有气球射爆所用弓箭最少。

为了让气球尽可能的重叠,需要对数组进行排序。既然按照起始位置排序,那么就从前向后遍历气球数组,靠左尽可能让气球重复。如果气球重叠了,重叠气球中右边边界的最小值 之前的区间一定需要一个弓箭

以题目示例: [[10,16],[2,8],[1,6],[7,12]]为例,如图:(方便起见,已经排序)

452.用最少数量的箭引爆气球

可以看出首先第一组重叠气球,一定是需要一个箭,气球3,的左边界大于了 第一组重叠气球的最小右边界,所以再需要一支箭来射气球3了。

C++代码如下:

class Solution {
private:
    static bool cmp(const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0];
    }
public:
    int findMinArrowShots(vector<vector<int>>& points) {
        if (points.size() == 0) return 0;
        sort(points.begin(), points.end(), cmp);

        int result = 1; // points 不为空至少需要一支箭
        for (int i = 1; i < points.size(); i++) {
            if (points[i][0] > points[i - 1][1]) {  // 气球i和气球i-1不挨着,注意这里不是>=
                result++; // 需要一支箭
            }
            else {  // 气球i和气球i-1挨着
                points[i][1] = min(points[i - 1][1], points[i][1]); // 更新重叠气球最小右边界
            }
        }
        return result;
    }
};

  • 时间复杂度:O(nlog n),因为有一个快排
  • 空间复杂度:O(1),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间

可以看出代码并不复杂。

注意事项

注意题目中说的是:满足 xstart ≤ x ≤ xend,则该气球会被引爆。那么说明两个气球挨在一起不重叠也可以一起射爆,

所以代码中 if (points[i][0] > points[i - 1][1]) 不能是>=

二、无重叠区间

题目

文章

视频

按照右边界排序还是按照左边界排序都可以。主要就是为了让区间尽可能的重叠。按照右边界排序,从左向右记录非交叉区间的个数。最后用区间总数减去非交叉区间的个数就是需要移除的区间个数了。此时问题就是要求非交叉区间的最大个数。

如图:

区间,1,2,3,4,5,6都按照右边界排好序。取 区间1 和 区间2 右边界的最小值,因为这个最小值之前的部分一定是 区间1 和区间2 的重合部分,如果这个最小值也触达到区间3,那么说明 区间 1,2,3都是重合的。

接下来就是找大于区间1结束位置的区间,是从区间4开始。区间4结束之后,再找到区间6,所以一共记录非交叉区间的个数是三个。总共区间个数为6,减去非交叉区间的个数3。移除区间的最小数量就是3。

C++代码如下:

class Solution {
public:
    // 按照区间右边界排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[1] < b[1];
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 1; // 记录非交叉区间的个数
        int end = intervals[0][1]; // 记录区间分割点
        for (int i = 1; i < intervals.size(); i++) {
            if (end <= intervals[i][0]) {
                end = intervals[i][1];
                count++;
            }
        }
        return intervals.size() - count;
    }
};

  • 时间复杂度:O(nlog n) ,有一个快排
  • 空间复杂度:O(n),有一个快排,最差情况(倒序)时,需要n次递归调用。因此确实需要O(n)的栈空间

补充

补充(1)

左边界排序直接求 重叠的区间,count为记录重叠区间数。

class Solution {
public:
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 改为左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 0; // 注意这里从0开始,因为是记录重叠区间
        int end = intervals[0][1]; // 记录区间分割点
        for (int i = 1; i < intervals.size(); i++) {   
            if (intervals[i][0] >= end)  end = intervals[i][1]; // 无重叠的情况
            else { // 重叠情况 
                end = min(end, intervals[i][1]);
                count++;
            }
        }
        return count;
    }
};

其实代码还可以精简一下, 用 intervals[i][1] 替代 end变量,只判断 重叠情况就好

class Solution {
public:
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 改为左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);
        int count = 0; // 注意这里从0开始,因为是记录重叠区间
        for (int i = 1; i < intervals.size(); i++) {
            if (intervals[i][0] < intervals[i - 1][1]) { //重叠情况
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]);
                count++;
            }
        }
        return count;
    }
};

补充(2)
class Solution {
public:
    // 按照区间右边界排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[1] < b[1]; // 右边界排序 
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);

        int result = 1; // points 不为空至少需要一支箭
        for (int i = 1; i < intervals.size(); i++) {
            if (intervals[i][0] >= intervals[i - 1][1]) {
                result++; // 需要一支箭
            }
            else {  // 气球i和气球i-1挨着
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
            }
        }
        return intervals.size() - result;
    }
};

这里按照 左边界排序,或者按照右边界排序,都可以AC,原理是一样的。

class Solution {
public:
    // 按照区间左边界排序
    static bool cmp (const vector<int>& a, const vector<int>& b) {
        return a[0] < b[0]; // 左边界排序
    }
    int eraseOverlapIntervals(vector<vector<int>>& intervals) {
        if (intervals.size() == 0) return 0;
        sort(intervals.begin(), intervals.end(), cmp);

        int result = 1; // points 不为空至少需要一支箭
        for (int i = 1; i < intervals.size(); i++) {
            if (intervals[i][0] >= intervals[i - 1][1]) {
                result++; // 需要一支箭
            }
            else {  // 气球i和气球i-1挨着
                intervals[i][1] = min(intervals[i - 1][1], intervals[i][1]); // 更新重叠气球最小右边界
            }
        }
        return intervals.size() - result;
    }
};

三、划分字母区间

题目

文章

视频

一想到分割字符串就想到了回溯,但本题其实不用回溯去暴力搜索。题目要求同一字母最多出现在一个片段中,那么如何把同一个字母的都圈在同一个区间里呢?

在遍历的过程中相当于是要找每一个字母的边界,如果找到之前遍历过的所有字母的最远边界,说明这个边界就是分割点了。此时前面出现过所有字母,最远也就到这个边界了。

可以分为如下两步:

  • 统计每一个字符最后出现的位置
  • 从头遍历字符,并更新字符的最远出现下标,如果找到字符最远出现位置下标和当前下标相等了,则找到了分割点

如图:

763.划分字母区间

class Solution {
public:
    vector<int> partitionLabels(string S) {
        int hash[27] = {0}; // i为字符,hash[i]为字符出现的最后位置
        for (int i = 0; i < S.size(); i++) { // 统计每一个字符最后出现的位置
            hash[S[i] - 'a'] = i;
        }
        vector<int> result;
        int left = 0;
        int right = 0;
        for (int i = 0; i < S.size(); i++) {
            right = max(right, hash[S[i] - 'a']); // 找到字符出现的最远边界
            if (i == right) {
                result.push_back(right - left + 1);
                left = i + 1;
            }
        }
        return result;
    }
};

  • 时间复杂度:O(n)
  • 空间复杂度:O(1),使用的hash数组是固定大小
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值