假设某一频点上的发送信号为 x x x,该频点上的接收信号 x ~ \tilde x x~可表示为
x ~ = x + z \tilde x=x+z x~=x+z
其中, z z z为高斯随机变量,均值为0,方差为 σ 2 \sigma^2 σ2。
在已知发射符号 x x x的条件下,接收符号 x ~ \tilde x x~的条件概率密度函数为
p ( x ~ ∣ x ) = 1 2 π σ 2 exp [ − 1 2 σ 2 ∣ x ~ − x ∣ 2 ] p(\tilde x|x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{1}{2\sigma^2}|\tilde x-x|^2\right] p(x~∣x)=2πσ21exp[−2σ21∣x~−x∣2]
接收机的目的在于找出使得 p ( x ∣ x ~ ) p(x|\tilde x) p(x∣x~)最大的 x x x(已知接收信号 x ~ \tilde x x~,找出最有可能的发送信号 x x x),该准则称为最大后验概率检测,即
x ^ = arg max x p ( x ∣ x ~ ) \hat x=\argmax_{x}p(x|\tilde x) x^=xargmaxp(x∣x~)
解调后第 l l l个比特 b l b_l bl的LLR公式为
L L R ( b l ) = ln ( p ( b l = 0 ∣ x ~ ) p ( b l = 1 ∣ x ~ ) ) LLR(b_l)=\ln\left(\frac{p(b_l=0|\tilde x)}{p(b_l=1|\tilde x)}\right) LLR(bl)=ln(p(bl=1∣x~)p(bl=0∣x~))
若该LLR为正,则认为 b l = 0 b_l=0 bl=0,为负则认为 b l = 1 b_l=1 bl=1。由贝叶斯公式,有
p ( b l = 0 ∣ x ~ ) = p ( x ~ ∣ b l = 0 ) p ( b l = 0 ) p ( x ~ ) p(b_l=0|\tilde x)=\frac{p(\tilde x|b_l=0)p(b_l=0)}{p(\tilde x)} p(bl=0∣x~)=p(x~)p(x~∣bl=0)p(bl=0)
p ( b l = 1 ∣ x ~ ) = p ( x ~ ∣ b l = 1 ) p ( b l = 1 ) p ( x ~ ) p(b_l=1|\tilde x)=\frac{p(\tilde x|b_l=1)p(b_l=1)}{p(\tilde x)} p(bl=1∣x~)=p(x~)p(x~∣bl=1)p(bl=1)
由于各发送符号出现的概率相同( p ( b l = 0 ) = p ( b l = 1 ) p(b_l=0)=p(b_l=1) p(bl=0)=p(bl=1)),因此LLR公式可进一步表示为
L L R ( b l ) = ln ( p ( x ~ ∣ b l = 0 ) p ( x ~ ∣ b l = 1 ) ) LLR(b_l)=\ln\left(\frac{p(\tilde x|b_l=0)}{p(\tilde x|b_l=1)}\right) LLR(bl)=ln(p(x~∣bl=1)p(x~∣bl=0))
下面以QPSK和16QAM为例对LLR公式进行推导。
QPSK
NR中给出的QPSK公式为
d ( i ) = 1 2 [ ( 1 − 2 b ( 2 i ) ) + j ( 1 − 2 b ( 2 i + 1 ) ) ] d(i)=\frac{1}{\sqrt{2}}\left[(1-2b(2i))+j(1-2b(2i+1))\right] d(i)=21[(1−2b(2i))+j(1−2b(2i+1))]
由此可得QPSK的bit映射规律为
b0 | I | b1 | Q |
---|---|---|---|
0 | d | 0 | d |
1 | -d | 1 | -d |
其中, d = 1 / 2 d=1/\sqrt{2} d=1/2为QPSK对应的归一化因子。
由QPSK的调制公式可知, b 0 b_0 b0仅与实部有关,当 b 0 = 0 b_0=0 b0=0时,星座图实部为 d d d,则均衡后信号的实部 x ~ r e \tilde x_{re} x~re在 b 0 = 0 b_0=0 b0=0时的条件概率可以表示为
p ( x ~ r e ∣ b 0 = 0 ) = 1 2 π σ 2 exp [ − 1 2 σ 2 ∣ x ~ r e − d ∣ 2 ] p(\tilde x_{re}|b_0=0)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{1}{2\sigma^2}|\tilde x_{re}-d|^2\right] p(x~re∣b0=0)=2πσ21exp[−2σ21∣x~re−d∣2]
当 b 0 = 1 b_0=1 b0=1时,星座图实部为 − d -d −d,则均衡后信号的实部 x ~ r e \tilde x_{re} x~re在 b 0 = 1 b_0=1 b0=1时的条件概率可以表示为
p ( x ~ r e ∣ b 0 = 1 ) = 1 2 π σ 2 exp [ − 1 2 σ 2 ∣ x ~ r e − ( − d ) ∣ 2 ] p(\tilde x_{re}|b_0=1)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{1}{2\sigma^2}|\tilde x_{re}-(-d)|^2\right] p(x~re∣b0=1)=2πσ21exp[−2σ21