【通信算法】NR中软解调LLR的计算

本文详细介绍了5G NR通信中软解调的LLR(Log-Likelihood Ratio)计算,涉及QPSK、16QAM、64QAM和256QAM调制方式。通过解析不同调制方式下,根据接收信号计算LLR的数学推导,展示了如何判断比特取值,并讨论了LLR Scaling的重要性。
摘要由CSDN通过智能技术生成

假设某一频点上的发送信号为 x x x,该频点上的接收信号 x ~ \tilde x x~可表示为

x ~ = x + z \tilde x=x+z x~=x+z

其中, z z z为高斯随机变量,均值为0,方差为 σ 2 \sigma^2 σ2

在已知发射符号 x x x的条件下,接收符号 x ~ \tilde x x~的条件概率密度函数为

p ( x ~ ∣ x ) = 1 2 π σ 2 exp ⁡ [ − 1 2 σ 2 ∣ x ~ − x ∣ 2 ] p(\tilde x|x)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{1}{2\sigma^2}|\tilde x-x|^2\right] p(x~x)=2πσ2 1exp[2σ21x~x2]

接收机的目的在于找出使得 p ( x ∣ x ~ ) p(x|\tilde x) p(xx~)最大的 x x x(已知接收信号 x ~ \tilde x x~,找出最有可能的发送信号 x x x),该准则称为最大后验概率检测,即

x ^ = arg max ⁡ x p ( x ∣ x ~ ) \hat x=\argmax_{x}p(x|\tilde x) x^=xargmaxp(xx~)

解调后第 l l l个比特 b l b_l bl的LLR公式为

L L R ( b l ) = ln ⁡ ( p ( b l = 0 ∣ x ~ ) p ( b l = 1 ∣ x ~ ) ) LLR(b_l)=\ln\left(\frac{p(b_l=0|\tilde x)}{p(b_l=1|\tilde x)}\right) LLR(bl)=ln(p(bl=1∣x~)p(bl=0∣x~))

若该LLR为正,则认为 b l = 0 b_l=0 bl=0,为负则认为 b l = 1 b_l=1 bl=1。由贝叶斯公式,有

p ( b l = 0 ∣ x ~ ) = p ( x ~ ∣ b l = 0 ) p ( b l = 0 ) p ( x ~ ) p(b_l=0|\tilde x)=\frac{p(\tilde x|b_l=0)p(b_l=0)}{p(\tilde x)} p(bl=0∣x~)=p(x~)p(x~bl=0)p(bl=0)

p ( b l = 1 ∣ x ~ ) = p ( x ~ ∣ b l = 1 ) p ( b l = 1 ) p ( x ~ ) p(b_l=1|\tilde x)=\frac{p(\tilde x|b_l=1)p(b_l=1)}{p(\tilde x)} p(bl=1∣x~)=p(x~)p(x~bl=1)p(bl=1)

由于各发送符号出现的概率相同( p ( b l = 0 ) = p ( b l = 1 ) p(b_l=0)=p(b_l=1) p(bl=0)=p(bl=1)),因此LLR公式可进一步表示为

L L R ( b l ) = ln ⁡ ( p ( x ~ ∣ b l = 0 ) p ( x ~ ∣ b l = 1 ) ) LLR(b_l)=\ln\left(\frac{p(\tilde x|b_l=0)}{p(\tilde x|b_l=1)}\right) LLR(bl)=ln(p(x~bl=1)p(x~bl=0))

下面以QPSK和16QAM为例对LLR公式进行推导。

QPSK

NR中给出的QPSK公式为

d ( i ) = 1 2 [ ( 1 − 2 b ( 2 i ) ) + j ( 1 − 2 b ( 2 i + 1 ) ) ] d(i)=\frac{1}{\sqrt{2}}\left[(1-2b(2i))+j(1-2b(2i+1))\right] d(i)=2 1[(12b(2i))+j(12b(2i+1))]

由此可得QPSK的bit映射规律为

b0 I b1 Q
0 d 0 d
1 -d 1 -d

其中, d = 1 / 2 d=1/\sqrt{2} d=1/2 为QPSK对应的归一化因子。

由QPSK的调制公式可知, b 0 b_0 b0仅与实部有关,当 b 0 = 0 b_0=0 b0=0时,星座图实部为 d d d,则均衡后信号的实部 x ~ r e \tilde x_{re} x~re b 0 = 0 b_0=0 b0=0时的条件概率可以表示为

p ( x ~ r e ∣ b 0 = 0 ) = 1 2 π σ 2 exp ⁡ [ − 1 2 σ 2 ∣ x ~ r e − d ∣ 2 ] p(\tilde x_{re}|b_0=0)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{1}{2\sigma^2}|\tilde x_{re}-d|^2\right] p(x~reb0=0)=2πσ2 1exp[2σ21x~red2]

b 0 = 1 b_0=1 b0=1时,星座图实部为 − d -d d,则均衡后信号的实部 x ~ r e \tilde x_{re} x~re b 0 = 1 b_0=1 b0=1时的条件概率可以表示为

p ( x ~ r e ∣ b 0 = 1 ) = 1 2 π σ 2 exp ⁡ [ − 1 2 σ 2 ∣ x ~ r e − ( − d ) ∣ 2 ] p(\tilde x_{re}|b_0=1)=\frac{1}{\sqrt{2\pi\sigma^2}}\exp\left[-\frac{1}{2\sigma^2}|\tilde x_{re}-(-d)|^2\right] p(x~reb0=1)=2πσ2 1exp[2σ21

  • 5
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
LDPC LLR BP(Low-Density Parity-Check Log Likelihood Ratio Belief Propagation)译码是一种误码纠正算法,用于纠正在传输过程中产生的错误比特。 该译码算法的基本思想是将接收到的编码信息看作是经过加噪声的信号,通过计算对应比特的似然比(LLR),来推断出编码比特的可能取值。LLR即接收到的比特为0和1的对数似然比。 LDPC LLR BP译码的过程是通过迭代来不断优化对比特的似然比估计,直到达到一定的收敛准则。在译码过程中,首先根据接收到的码字,计算出每个比特的初始似然比。然后,根据校验矩阵的结构,更新每个校验节点与相邻比特节点之间的消息传递,以及每个比特节点与相邻校验节点之间的消息传递。消息传递的过程中,通过将其他节点传递过来的消息与本节点的LLR进行组合,来计算出相邻节点的LLR。经过多次迭代更新,直到满足收敛准则,即可得到纠正后的比特信息。 LDPC LLR BP译码算法具有较好的性能和低复杂度,适用于高速传输和大数据容量的通信系统。与其他译码算法相比,LDPC LLR BP在误码性能上有着较好的近远远绩,并且可以灵活调整译码的迭代次数来平衡性能和复杂度。 总而言之,LDPC LLR BP译码是一种基于似然比和消息传递的纠错码译码算法,通过迭代计算比特的似然比来推断编码比特的取值,从而实现误码的纠正。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值