生成对抗网络(Generative Adversarial Networks,简称GAN)是一种强大的深度学习模型,可以用于生成逼真的图像、音频和文本等内容。GAN由生成器(Generator)和判别器(Discriminator)组成,两者通过对抗训练的方式相互竞争,使得生成器能够逐渐生成更加逼真的样本。在本文中,我们将使用TensorFlow来实现一个基本的GAN模型,并通过训练生成手写数字图像的示例来展示其工作原理。
首先,我们需要导入必要的库和模块。在这个例子中,我们将使用TensorFlow 2.0版本。
import tensorflow as tf
from tensorflow.keras import layers
import numpy as np
import matplotlib