kaggle泰坦尼克(Titanic: Machine Learning from Disaster)数据分析(二)

这是上一篇分析:https://blog.csdn.net/Nyte2018/article/details/90295606
这次学习的kernel是Titanic Data Science Solutions

1、准备工作

先导入各种库:

# data analysis and wrangling
import pandas as pd
import numpy as np
import random as rnd
# visualization
import seaborn as sns
import matplotlib.pyplot as plt
%matplotlib inline
# machine learning
from sklearn.linear_model import LogisticRegression
from sklearn.svm import SVC, LinearSVC
from sklearn.ensemble import RandomForestClassifier
from sklearn.neighbors import KNeighborsClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.linear_model import Perceptron
from sklearn.linear_model import SGDClassifier
from sklearn.tree import DecisionTreeClassifier

读入数据:

train_df = pd.read_csv('data/train.csv')
test_df = pd.read_csv('data/test.csv')
combine = [train_df, test_df]

获得训练集列名:

print(train_df.columns.values)
['PassengerId' 'Survived' 'Pclass' 'Name' 'Sex' 'Age' 'SibSp' 'Parch'
 'Ticket' 'Fare' 'Cabin' 'Embarked']

看一下数据前几列:

# preview the data
train_df.head()

在这里插入图片描述
看一下后几行:

train_df.tail()

在这里插入图片描述
查看数据集的头部信息:

train_df.info()
print('_'*40)
test_df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):
PassengerId    891 non-null int64
Survived       891 non-null int64
Pclass         891 non-null int64
Name           891 non-null object
Sex            891 non-null object
Age            714 non-null float64
SibSp          891 non-null int64
Parch          891 non-null int64
Ticket         891 non-null object
Fare           891 non-null float64
Cabin          204 non-null object
Embarked       889 non-null object
dtypes: float64(2), int64(5), object(5)
memory usage: 83.6+ KB
________________________________________
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
PassengerId    418 non-null int64
Pclass         418 non-null int64
Name           418 non-null object
Sex            418 non-null object
Age            332 non-null float64
SibSp          418 non-null int64
Parch          418 non-null int64
Ticket         418 non-null object
Fare           417 non-null float64
Cabin          91 non-null object
Embarked       418 non-null object
dtypes: float64(2), int64(4), object(5)
memory usage: 36.0+ KB

可以看出,在训练集中,有缺失值的变量多少比较为:Cabin > Age > Embarked;而在测试集中,Cabin > Age。

训练集数据的详情:

train_df.describe()
#Review survived rate using `percentiles=[.61, .62]` knowing our problem description mentions 38% survival rate.
#Review Parch distribution using `percentiles=[.75, .8]`
#SibSp distribution `[.68, .69]`
#Age and Fare `[.1, .2, .3, .4, .5, .6, .7, .8, .9, .99]`

在这里插入图片描述
可以看出总样本数为891,大约38%的人员被救,而实际有32%。大于75%的乘客没有带父母孩子。将近30%的乘客有兄弟姐妹配偶在船上,小于1%的乘客票价最高512,65-80岁的乘客小于1%。

训练集中分类对象的详情:

train_df.describe(include=['O'])

在这里插入图片描述
可以看出,名字都是独一无二的,男性比较多,客舱号有许多一样的,登船港S比较多,票号有22%的重复值。

2、特征分析

根据pclass值分类的saleprices值的均值排名:

train_df[['Pclass', 'Survived']].groupby(['Pclass'], as_index=False).mean().sort_values(by='Survived', ascending=False)

在这里插入图片描述
同理根据sex:

train_df[["Sex", "Survived"]].groupby(['Sex'], as_index=False).mean().sort_values(by='Survived', ascending=False)

在这里插入图片描述
根据SibSp(船上(继)兄弟姐妹/配偶的人数):

train_df[["SibSp", "Survived"]].groupby(['SibSp'], as_index=False).mean().sort_values(by='Survived', ascending=False)

在这里插入图片描述
根据Parch(船上父母(继)子女的人数):

train_df[["Parch", "Survived"]].groupby(['Parch'], as_index=False).mean().sort_values(by='Survived', ascending=False)

在这里插入图片描述
可以看出,Pclass=1时,与Survived有很强的相关性;Sex=female时,有很高的救助率。而SibSp 和Parch,某些特定值是0相关性。

3、可视化分析

绘制age和Survived的直方图:

g = sns.FacetGrid(train_df, col='Survived')
g.map(plt.hist, 'Age', bins=20)

注:FacetGrid使用数据集和用于构造网格的变量初始化对象。然后,可以通过调用FacetGrid.map()或将一个或多个绘图函数应用于每个子集。
在这里插入图片描述
可以看出,Age <=4的婴儿有很高的获救率,Age = 80最年长的乘客获救,大多数15-25的没被获救,大多数乘客年龄在15-35。

同理绘制pclass:

#grid = sns.FacetGrid(train_df, col='Pclass', hue='Survived')
grid = sns.FacetGrid(train_df, col='Survived', row='Pclass', size=2.2, aspect=1.6)
grid.map(plt.hist, 'Age', alpha=.5, bins=20)
grid.add_legend();

在这里插入图片描述
可以看出,Pclass=3乘客最多,但大多数没获救,在Pclass=2和 Pclass=3的婴儿大多数获救,Pclass=1大多数乘客获救。

分类特征的相关性:

#grid = sns.FacetGrid(train_df, col='Embarked')
grid = sns.FacetGrid(train_df, row='Embarked', size=2.2, aspect=1.6)
grid.map(sns.pointplot, 'Pclass', 'Survived', 'Sex', palette='deep')
grid.add_legend()

在这里插入图片描述
可以看出,女性乘客获救的概率更大,但Embarked=C时,男性获救率更大,与Pclass=2 相比,Pclass=3有更高的获救率。

分类和数字特征的相关性:

#grid = sns.FacetGrid(train_df, col='Embarked', hue='Survived', palette={0: 'k', 1: 'w'})
grid = sns.FacetGrid(train_df, row='Embarked', col='Survived', size=2.2, aspect=1.6)
grid.map(sns.barplot, 'Sex', 'Fare', alpha=.5, ci=None)
grid.add_legend()

在这里插入图片描述
可以看出,票价越高的乘客的获救率越高,登船港和是否获救相关。

4、数据处理

经过前面地分析后,将Ticket和Cabin列删除:

print("Before", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape)
train_df = train_df.drop(['Ticket', 'Cabin'], axis=1)
test_df = test_df.drop(['Ticket', 'Cabin'], axis=1)
combine = [train_df, test_df]
"After", train_df.shape, test_df.shape, combine[0].shape, combine[1].shape
Before (891, 12) (418, 11) (891, 12) (418, 11)
('After', (891, 10), (418, 9), (891, 10), (418, 9))

提取名字中的称谓特征:

for dataset in combine:
    dataset['Title'] = dataset.Name.str.extract(' ([A-Za-z]+)\.', expand=False)
pd.crosstab(train_df['Title'], train_df['Sex'])

在这里插入图片描述
将这些称谓用一些共同的名字代替:

for dataset in combine:
    dataset['Title'] = dataset['Title'].replace(['Lady', 'Countess','Capt', 'Col',\
    'Don', 'Dr', 'Major', 'Rev', 'Sir', 'Jonkheer', 'Dona'], 'Rare')
    dataset['Title'] = dataset['Title'].replace('Mlle', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Ms', 'Miss')
    dataset['Title'] = dataset['Title'].replace('Mme', 'Mrs')    
train_df[['Title', 'Survived']].groupby(['Title'], as_index=False).mean()

在这里插入图片描述
将分类称谓转换为序数:

title_mapping = {"Mr": 1, "Miss": 2, "Mrs": 3, "Master": 4, "Rare": 5}
for dataset in combine:
    dataset['Title'] = dataset['Title'].map(title_mapping)
    dataset['Title'] = dataset['Title'].fillna(0)
train_df.head()

在这里插入图片描述
现在,我们就能删除Name和PassengerId特征:

train_df = train_df.drop(['Name', 'PassengerId'], axis=1)
test_df = test_df.drop(['Name'], axis=1)
combine = [train_df, test_df]
train_df.shape, test_df.shape
((891, 9), (418, 9))

将性别分类特征转为数字变量:

for dataset in combine:
    dataset['Sex'] = dataset['Sex'].map( {'female': 1, 'male': 0} ).astype(int)
train_df.head()

在这里插入图片描述
Pclass、Sex、Age的三者关系图:

#grid = sns.FacetGrid(train_df, col='Pclass', hue='Gender')
grid = sns.FacetGrid(train_df, row='Pclass', col='Sex', size=2.2, aspect=1.6)
grid.map(plt.hist, 'Age', alpha=.5, bins=20)
grid.add_legend()

在这里插入图片描述
通过上述图创建一个空数组来包含age值:

guess_ages = np.zeros((2,3))
guess_ages
array([[0., 0., 0.],
       [0., 0., 0.]])
for dataset in combine:
    for i in range(0, 2):
        for j in range(0, 3):
            guess_df = dataset[(dataset['Sex'] == i) & \
                                  (dataset['Pclass'] == j+1)]['Age'].dropna()
            # age_mean = guess_df.mean()
            # age_std = guess_df.std()
            # age_guess = rnd.uniform(age_mean - age_std, age_mean + age_std)
            age_guess = guess_df.median()
            # Convert random age float to nearest .5 age
            guess_ages[i,j] = int( age_guess/0.5 + 0.5 ) * 0.5           
    for i in range(0, 2):
        for j in range(0, 3):
            dataset.loc[ (dataset.Age.isnull()) & (dataset.Sex == i) & (dataset.Pclass == j+1),\
                    'Age'] = guess_ages[i,j]
    dataset['Age'] = dataset['Age'].astype(int)
train_df.head()

在这里插入图片描述
创建AgeBand变量,将age分为5类:

train_df['AgeBand'] = pd.cut(train_df['Age'], 5)
train_df[['AgeBand', 'Survived']].groupby(['AgeBand'], as_index=False).mean().sort_values(by='AgeBand', ascending=True)

在这里插入图片描述
将age转为序列:

for dataset in combine:    
    dataset.loc[ dataset['Age'] <= 16, 'Age'] = 0
    dataset.loc[(dataset['Age'] > 16) & (dataset['Age'] <= 32), 'Age'] = 1
    dataset.loc[(dataset['Age'] > 32) & (dataset['Age'] <= 48), 'Age'] = 2
    dataset.loc[(dataset['Age'] > 48) & (dataset['Age'] <= 64), 'Age'] = 3
    dataset.loc[ dataset['Age'] > 64, 'Age']
train_df.head()

在这里插入图片描述
将AgeBand列删除:

train_df = train_df.drop(['AgeBand'], axis=1)
combine = [train_df, test_df]
train_df.head()

在这里插入图片描述
创建新的家庭特征-在船上的全家总数:

for dataset in combine:
    dataset['FamilySize'] = dataset['SibSp'] + dataset['Parch'] + 1
train_df[['FamilySize', 'Survived']].groupby(['FamilySize'], as_index=False).mean().sort_values(by='Survived', ascending=False)

在这里插入图片描述
根据上述,创建另外一个特征—是否为一个人:

for dataset in combine:
    dataset['IsAlone'] = 0
    dataset.loc[dataset['FamilySize'] == 1, 'IsAlone'] = 1
train_df[['IsAlone', 'Survived']].groupby(['IsAlone'], as_index=False).mean()

在这里插入图片描述
将Parch, SibSp,FamilySize这些特征删除:

train_df = train_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
test_df = test_df.drop(['Parch', 'SibSp', 'FamilySize'], axis=1)
combine = [train_df, test_df]
train_df.head()

在这里插入图片描述
再创建一个变量Age*Class:

for dataset in combine:
    dataset['Age*Class'] = dataset.Age * dataset.Pclass
train_df.loc[:, ['Age*Class', 'Age', 'Pclass']].head(10)

在这里插入图片描述
登船港的缺失值用众数填充:

freq_port = train_df.Embarked.dropna().mode()[0]
freq_port
'S'
for dataset in combine:
    dataset['Embarked'] = dataset['Embarked'].fillna(freq_port)  
train_df[['Embarked', 'Survived']].groupby(['Embarked'], as_index=False).mean().sort_values(by='Survived', ascending=False)

在这里插入图片描述
将Embarked转为数字变量:

for dataset in combine:
    dataset['Embarked'] = dataset['Embarked'].map( {'S': 0, 'C': 1, 'Q': 2} ).astype(int)
train_df.head()

在这里插入图片描述
将票价的缺失值用中位数填充:

test_df['Fare'].fillna(test_df['Fare'].dropna().median(), inplace=True)
test_df.head()

在这里插入图片描述
与age相同的处理方法:

train_df['FareBand'] = pd.qcut(train_df['Fare'], 4)
train_df[['FareBand', 'Survived']].groupby(['FareBand'], as_index=False).mean().sort_values(by='FareBand', ascending=True)

在这里插入图片描述

for dataset in combine:
    dataset.loc[ dataset['Fare'] <= 7.91, 'Fare'] = 0
    dataset.loc[(dataset['Fare'] > 7.91) & (dataset['Fare'] <= 14.454), 'Fare'] = 1
    dataset.loc[(dataset['Fare'] > 14.454) & (dataset['Fare'] <= 31), 'Fare']   = 2
    dataset.loc[ dataset['Fare'] > 31, 'Fare'] = 3
    dataset['Fare'] = dataset['Fare'].astype(int)
train_df = train_df.drop(['FareBand'], axis=1)
combine = [train_df, test_df]   
train_df.head(10)

在这里插入图片描述
测试集中的前10行:

test_df.head(10)

在这里插入图片描述

5、建立模型

定义训练测试的XY:

X_train = train_df.drop("Survived", axis=1)
Y_train = train_df["Survived"]
X_test  = test_df.drop("PassengerId", axis=1).copy()
X_train.shape, Y_train.shape, X_test.shape
((891, 8), (891,), (418, 8))

Logistic回归模型:

# Logistic Regression
logreg = LogisticRegression()
logreg.fit(X_train, Y_train)
Y_pred = logreg.predict(X_test)
acc_log = round(logreg.score(X_train, Y_train) * 100, 2)
acc_log
80.36

计算特征的系数:

coeff_df = pd.DataFrame(train_df.columns.delete(0))
coeff_df.columns = ['Feature']
coeff_df["Correlation"] = pd.Series(logreg.coef_[0])
coeff_df.sort_values(by='Correlation', ascending=False)

在这里插入图片描述
同理SVM回归:

#Support Vector Machines
svc = SVC()
svc.fit(X_train, Y_train)
Y_pred = svc.predict(X_test)
acc_svc = round(svc.score(X_train, Y_train) * 100, 2)
acc_svc
83.84

KNN:

knn = KNeighborsClassifier(n_neighbors = 3)
knn.fit(X_train, Y_train)
Y_pred = knn.predict(X_test)
acc_knn = round(knn.score(X_train, Y_train) * 100, 2)
acc_knn
84.74

朴素贝叶斯:

#Gaussian Naive Bayes
gaussian = GaussianNB()
gaussian.fit(X_train, Y_train)
Y_pred = gaussian.predict(X_test)
acc_gaussian = round(gaussian.score(X_train, Y_train) * 100, 2)
acc_gaussian
72.28

感知机:

#Perceptron
perceptron = Perceptron()
perceptron.fit(X_train, Y_train)
Y_pred = perceptron.predict(X_test)
acc_perceptron = round(perceptron.score(X_train, Y_train) * 100, 2)
acc_perceptron
78.0

线性分类支持向量机:

#Linear SVC
linear_svc = LinearSVC()
linear_svc.fit(X_train, Y_train)
Y_pred = linear_svc.predict(X_test)
acc_linear_svc = round(linear_svc.score(X_train, Y_train) * 100, 2)
acc_linear_svc
79.01

随机梯度下降SGD:

#Stochastic Gradient Descent
sgd = SGDClassifier()
sgd.fit(X_train, Y_train)
Y_pred = sgd.predict(X_test)
acc_sgd = round(sgd.score(X_train, Y_train) * 100, 2)
acc_sgd
73.85

决策树:

#Decision Tree
decision_tree = DecisionTreeClassifier()
decision_tree.fit(X_train, Y_train)
Y_pred = decision_tree.predict(X_test)
acc_decision_tree = round(decision_tree.score(X_train, Y_train) * 100, 2)
acc_decision_tree
86.76

随机森林:

#Random Forest
random_forest = RandomForestClassifier(n_estimators=100)
random_forest.fit(X_train, Y_train)
Y_pred = random_forest.predict(X_test)
random_forest.score(X_train, Y_train)
acc_random_forest = round(random_forest.score(X_train, Y_train) * 100, 2)
acc_random_forest
86.76

模型综合:

models = pd.DataFrame({
    'Model': ['Support Vector Machines', 'KNN', 'Logistic Regression', 
              'Random Forest', 'Naive Bayes', 'Perceptron', 
              'Stochastic Gradient Decent', 'Linear SVC', 
              'Decision Tree'],
    'Score': [acc_svc, acc_knn, acc_log, 
              acc_random_forest, acc_gaussian, acc_perceptron, 
              acc_sgd, acc_linear_svc, acc_decision_tree]})
models.sort_values(by='Score', ascending=False)

在这里插入图片描述
最后选择随机森林进行数据提交:

submission = pd.DataFrame({
        "PassengerId": test_df["PassengerId"],
        "Survived": Y_pred
    })
#submission.to_csv('../output/submission.csv', index=False)
  • 0
    点赞
  • 2
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值