收到这么一个需求:存在一个数据库查询功能接口,需要完成1000个条件语句的查询,并将查询结果与原始数据库(如es)的查询结果对比,从而判定该功能接口是否正常,且正确可用。
第一次测试设计:读取文件中的1000个查询条件,顺序执行。但由于查询数据量较大,单线程顺序完成1000次查询耗时较长,效率太低——抛弃;
第二次测试设计:使用并发查询,多线程并发提高工作效率,节省了大大的时间。但将输出的1000个查询结果与原始数据库查询结果对比时,发现某些语句差异较大,为什么?
抽丝剥茧
为何功能接口查询结果与原始数据查询结果差异性大?
经过排查,问题出在查询语句对比时匹配错位——使用简单并发查询,输出并不严格按照读入顺序。换句话说:读入1、2、3、4、5个顺序查询条件,并发查询输出顺序可能时2、1、3、4、5,也可能时4、5、2、1、3。
那么,如何在编写测试脚本时,让并发输出严格按照读入顺序输出呢?
亡羊补牢
从Python3.2开始,标准库为我们提供了concurrent.futures模块,它提供了ThreadPoolExecutor和ProcessPoolExecutor两个类,可以帮助我们更好地完成并发设计。
本文我们不过深地讲述如何使用这些Python类,只简单讲述如何解答我们的核心问题——“如何在并发时让结果严格按照输入顺序输出”。
线程池ThreadPoolExecutor……
如下所示,为ThreadPoolExecutor的基本使用方法,打印输入的list列表中的数字。
ThreadPoolExecutor()初始化,创建线程池,最多2个线程并发运行,通过submit调用子函数(打印输入数字),最终通过as_completed等待所有任务完成后,通过result收集返回结果。
# -*-coding:utf-8 -*-
from concurrent.futures import ThreadPoolExecutor,as_completed
# 子函数,打印输入数字
def print_num(num):
return num
list = [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20]
##############使用ThreadPoolExecutor###################
###############并发执行,非顺序返回################
# 创建线程池子
# 设置最多2个线程运行,其他等待
executor = ThreadPoolExecutor(max_workers=2)
all_task = [executor.submit(print_num, (num)) for num in list]
result2_list = []
for future in as_completed(all_task):
data = future.result()
result2_list.append(data)
print("并发执行,非顺序返回:"+ str(result2_list))
##############################################
如下图所示为上述使用ThreadPoolExecutor并发运行的结果,由结果打印可知,输出并非严格按照列表输入值顺序输出。由此可以预见,当我们简单使用并发时,我们的结果可能并不是我们认为的与“顺序”输出。
那么,如何改造呢?请关注map方法。
使用map方法,无需提前使用submit方法,map方法与python标准库中的map含义相同,都是将序列中的每个元素都执行同一个函数。###############并发执行,顺序返回################
# 创建线程池子
# 设置最多2个线程运行,其他等待
executor = ThreadPoolExecutor(max_workers=2)
result1_list = []
for result in executor.map(print_num, list):
result1_list.append(result)
print("并发执行,顺序返回:" + str(result1_list))
##############################################
上面的代码就是对list的每个元素都执行print_num子函数,并分配各线程池。
由此可以看到,执行结果与上面的as_completed方法的结果不同,输出顺序和list列表的顺序相同。
进程池ProcessPoolExecutor……
使用进程池ProcessPoolExecutor处理并发输入,按序输出问题,同ThreadPoolExecutor一样,使用map方法即可解决。但是值得注意的是,注意,在使用多进程时,必须把 多进程代码写在?if __name__ == '__main__' 下面,否则异常,甚至报错“concurrent.futures.process.BrokenProcessPool: A process in the process pool was terminated abruptly while the future was running or pending.”
#########################使用ProcessPoolExecutor#####################
###############并发执行,顺序返回################
# 创建进程池子
# 设置最多2个进程运行,其他等待
if __name__ == '__main__':
executor = ProcessPoolExecutor(max_workers=2)
result2_list = []
for result in executor.map(print_num, list):
result2_list.append(result)
print("ProcessPoolExecutor并发执行,顺序返回:" + str(result2_list))
##############################################
#####################################################################
还存在一点“笨”方法……
除了上述所说的ThreadPoolExecutor和ProcessPoolExecutor使用map方法让结果顺序输出外,我们还可以使用一些笨方法。
例如,使用并发运行程序(并发方法不仅限于ThreadPoolExecutor和ProcessPoolExecutor,还可以使用threading等等)sort方法对输出结果排序。就上述案例而言,不使用map可以如下改造:
###############并发执行,非顺序返回################
# 创建线程池子
# 设置最多2个线程运行,其他等待
executor = ThreadPoolExecutor(max_workers=2)
all_task = [executor.submit(print_num, (num)) for num in list]
result2_list = []
for future in as_completed(all_task):
data = future.result()
result2_list.append(data)
result2_list.sort()
print("ThreadPoolExecutor并发执行,非顺序返回:"+ str(result2_list))
##############################################
最终,输出结果符合我们的要求。
结案陈词
ThreadPoolExecutor 多线程并行执行任务,可以共享当前进程变量,但缺点也很致命,但其实仍然最多只能占用 CPU 一个核。
如果指定的任务和线程数不恰当(比如一个任务很短,线程数量很多,导致线程频繁调用回收),那么效率还不如单线程。ProcessPoolExecutor可以使用多核进行计算,但缺点就是进程之间共享数据就比较麻烦,消耗更多的内存。
本文的主要目的是帮助大家认识:并发好用,但使用需谨慎。谨防一不小心落入并发的坑,使用map方法可以帮助大家快速地完成测试结果地有序输出。
最后感谢每一个认真阅读我文章的人,礼尚往来总是要有的,虽然不是什么很值钱的东西,如果你用得到的话可以直接拿走:
这些资料,对于【软件测试】的朋友来说应该是最全面最完整的备战仓库,这个仓库也陪伴上万个测试工程师们走过最艰难的路程,希望也能帮助到你!有需要的小伙伴可以点击下方小卡片领取