【状态估计】基于FOMIAUKF、分数阶模块、模型估计、多新息系数的电池SOC估计研究(Matlab代码实现)

      💥💥💞💞欢迎来到本博客❤️❤️💥💥

🏆博主优势:🌞🌞🌞博客内容尽量做到思维缜密,逻辑清晰,为了方便读者。

⛳️座右铭:行百里者,半于九十。

📋📋📋本文目录如下:🎁🎁🎁

目录

 ⛳️赠与读者

💥1 概述

基于FOMIAUKF、分数阶模块与多新息系数的电池SOC估计研究

一、FOMIAUKF算法的基本原理与改进机制

二、分数阶模块在电池建模中的优势与实现

三、多新息系数的定义与优化机制

四、现有SOC估计方法对比

五、FOMIAUKF算法的仿真验证与性能分析

六、结论与展望

📚2 运行结果

🎉3 参考文献

🌈4 Matlab代码、数据、文章


 ⛳️赠与读者

👨‍💻做科研,涉及到一个深在的思想系统,需要科研者逻辑缜密,踏实认真,但是不能只是努力,很多时候借力比努力更重要,然后还要有仰望星空的创新点和启发点。建议读者按目录次序逐一浏览,免得骤然跌入幽暗的迷宫找不到来时的路,它不足为你揭示全部问题的答案,但若能解答你胸中升起的一朵朵疑云,也未尝不会酿成晚霞斑斓的别一番景致,万一它给你带来了一场精神世界的苦雨,那就借机洗刷一下原来存放在那儿的“躺平”上的尘埃吧。

     或许,雨过云收,神驰的天地更清朗.......🔎🔎🔎

💥1 概述

基于FOMIAUKF、分数阶模块与多新息系数的电池SOC估计研究

一、FOMIAUKF算法的基本原理与改进机制

1. 无迹卡尔曼滤波(UKF)基础
UKF是一种适用于非线性系统的状态估计算法,其核心是通过无迹变换(Unscented Transformation, UT)生成Sigma点,避免传统线性化方法(如EKF)的误差累积问题。具体步骤包括:

  • 初始化:确定状态向量(如SOC)和协方差矩阵;
  • Sigma点生成:基于参数λ、κ、γ计算权重,生成2n+1个Sigma点;
  • 非线性传播:通过电池模型预测Sigma点的状态;
  • 测量更新:结合观测数据(如电压、电流)更新状态估计和协方差矩阵。

2. FOMIAUKF的改进
FOMIAUKF(分数阶优化多新息无迹卡尔曼滤波器)在传统UKF基础上进行了三方面改进:

  • 分数阶模型融合:采用分数阶微积分描述电池动态特性,替代传统整数阶模型,提升非线性行为建模精度;
  • 多新息系数优化:引入多时间点的观测信息,通过加权矩阵动态调整历史数据的权重,减少时滞和噪声干扰;
  • 自适应噪声估计:集成Sage-Husa算法,实时估计时变的过程噪声和测量噪声协方差,增强鲁棒性。
二、分数阶模块在电池建模中的优势与实现

1. 分数阶模型的必要性
传统整数阶等效电路模型(IOM)难以精确描述电池内部的电化学过程(如电荷转移、扩散动力学)。分数阶模型(FOM)通过引入非整数阶导数,更贴合实际物理机制:

  • 关键元件:使用恒相位元件(CPE)替代传统电容,模拟双电层效应和扩散阻抗;

  • 数学基础:基于Grünwald-Letnikov(G-L)定义的离散化方法,实现分数阶微分方程的数值计算,公式为:

    其中,ζ为分数阶阶数,h为采样周期。

2. 分数阶模型的验证
实验表明,分数阶模型的电压预测误差(MAE)可降低至0.2%以下,显著优于整数阶模型。例如,在0.9阶分数阶PNGV模型中,SOC估计误差较UKF减少50%以上。

三、多新息系数的定义与优化机制

1. 多新息理论的核心思想
传统卡尔曼滤波仅利用当前时刻的观测信息,而多新息理论通过构建包含多个历史时刻观测值的“新息矩阵”,增强对系统动态的捕捉能力:

  • 新息矩阵构造:将单新息向量扩展为矩阵形式,例如:

    其中,e_k为当前时刻的观测残差,p为新息长度;

  • 权重分配:引入遗忘因子或动态加权矩阵,削弱陈旧数据的影响,防止数据过饱和。

2. 在FOMIAUKF中的具体应用
在电池SOC估计中,多新息系数通过以下步骤优化UKF:

  • 测量更新改进:在协方差更新中融合多时间点信息,调整卡尔曼增益矩阵;
  • 动态权重调整:基于噪声统计特性或残差分析,实时更新新息权重,提升对突变工况的适应性。
四、现有SOC估计方法对比
方法类型典型算法优点缺点
传统方法安时积分法、开路电压法简单易实现依赖初始值、需长时间静置
基于模型方法EKF、UKF动态适应性强对非线性系统误差敏感
数据驱动方法LSTM、GRU无需精确建模需大量数据、计算资源
混合方法FOMIAUKF高精度、鲁棒性强参数调优复杂
五、FOMIAUKF算法的仿真验证与性能分析

1. 实验设置

  • 电池参数:采用A123 26650锂离子电池(容量2.5Ah),在UDDS和US06动态工况下测试;
  • 对比算法:传统UKF、EKF、SRCKF(平方根容积卡尔曼滤波)。

2. 结果分析

  • 精度对比:FOMIAUKF的SOC估计MAE<1%,较UKF(误差3%)提升显著;
  • 鲁棒性验证:在初值误差±20%时,FOMIAUKF可在30秒内收敛至真实值,优于MIEKF(收敛时间>60秒);
  • 计算效率:分数阶模型通过减少RC模块数量,计算复杂度降低30%,实时性满足BMS需求。
六、结论与展望

FOMIAUKF通过融合分数阶建模、多新息理论与自适应噪声估计,实现了电池SOC的高精度估计。未来研究方向包括:

  1. 参数自适应优化:结合机器学习算法自动调整分数阶阶数和新息长度;
  2. 多状态联合估计:扩展至SOH(健康状态)和SOP(功率状态)的同步估计;
  3. 硬件部署优化:开发嵌入式平台专用算法,满足车载BMS的实时性要求。

通过上述技术路径,FOMIAUKF为电池管理系统的智能化与可靠性提供了创新解决方案。

📚2 运行结果

 

 

 

 部分代码:

%% OCV-SOC
x=OCV_SOC(2,:);
y=OCV_SOC(1,:);
p=polyfit(x,y,8);
%% 分数阶模块中间变量
w_m=1; %因子
w_n=1; %因子
w=cell(1,T+1); %因子
w{1}=[1 0 0;0 1 0;0 0 0];
for j=2:T+1 %因子,参考说明文档及其参考文献
    w_m=(1-(m+1)/(j-1))*w_m;
    w_n=(1-(n+1)/(j-1))*w_n;
    w{j}=[w_m 0 0;0 w_n 0;0 0 0];
end

%% 模型估计得到的电压值
Xekf=[0;0;0.8];%[U1,U2,SOC]初始值
L=length(Xekf);
Uoc(1)=p(1)*Xekf(3)^8+p(2)*Xekf(3)^7+p(3)*Xekf(3)^6+p(4)*Xekf(3)^5+p(5)*Xekf(3)^4+p(6)*Xekf(3)^3+p(7)*Xekf(3)^2+p(8)*Xekf(3)+p(9);%OCV
Vekf(1)=Uoc(1)+C*Xekf-Cur(1)*R0;%估计得到的端电压值

🎉3 参考文献

文章中一些内容引自网络,会注明出处或引用为参考文献,难免有未尽之处,如有不妥,请随时联系删除。(文章内容仅供参考,具体效果以运行结果为准)

🌈4 Matlab代码、数据、文章

资料获取,更多粉丝福利,MATLAB|Simulink|Python资源获取

                                                           在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荔枝科研社

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值