双向长短时记忆循环神经网络

本文介绍了LSTM如何解决传统RNN的上下文信息有限问题,详细阐述了LSTM的结构和工作原理,并探讨了双向循环神经网络(BiRNN),特别是双向LSTM,其通过正向和反向传递提供更丰富的上下文信息。文章还提到了Bi-RNN的计算过程,并提供了相关论文链接和Keras实现Bi-LSTM模型的示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

LSTM

传统的循环神经网络(RNN)能够得到的上下文信息范围很有限。这个问题就使得隐含层的输入对于网络输出的影响随着网络环路的不断递归而衰退。

为了解决这个问题,长短时记忆(LSTM)结构诞生了。与其说长短时记忆是一种循环神经网络,倒不如说是一个加强版的组件被放在了循环神经网络中。

LSTM单元能够很好的解决跨时间记忆以及梯度消失的问题。LSTM结构的形式化定义如下:
在这里插入图片描述
LSTM时刻j的状态由两个向量组成,分别是cj和hj,cj是记忆组件,hj是隐藏状态组件,三个门结构i、f和o,分别控制输入、遗忘和输出。z为更新候选项

LSTM论文传送门:https://ieeexplore.ieee.org/document/6795963

LSTM单元大致结构如下:
在这里插入图片描述

简单通俗的理解LSTM的整个运作流程:https://www.jianshu.com/p/4b4701beba92

双向循环神经网络

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值