ClickHouse中的 Bitmap

文章详细介绍了ClickHouse中的Bitmap数据结构,如何构建和操作Bitmap,以及在用户画像、漏斗分析和留存分析等场景下的应用。Bitmap因其高效的空间利用率,常用于存储和处理大量用户标识,通过位运算实现数据的快速过滤和交并差集操作。然而,对于有序的漏斗分析,Bitmap需要配合其他机制来确保顺序一致性。
摘要由CSDN通过智能技术生成

ClickHouse Bitmap

一、bitmap本身

bitmap(位图)是一种利用比特位来进行数据存储的结构,非0即1。

简单举例:存储1-8的整数,如果我们用整数数组的话,至少需要4(1个int型整数按4字节)*8=32个字节的存储空间,但是如果用bitmap的话,我们只需要1个字节(8bit),从低位到高位,每一位是否为1即可表示该数是否存在。显然,使用bitmap能够显著节省用户存储空间。

二、clickhouse中的bitmap

2.1 定义

bitmap在clickhouse中是一种AggregateFunction的数据类型。

clickhouse使用RoaringBitmap实际存储位图对象,当基数小于或等于32时,它使用Set保存。当基数大于32时,它使用RoaringBitmap保存。这也是为什么低基数集的存储更快的原因。

2.2 构建方法

(来自官网:https://clickhouse.com/docs/zh/sql-reference/functions/bitmap-functions)

  • 通过对整形数组进行转换得到
    • bitmapBuild(array):将array转换为bitmap,示例:
SELECT bitmapBuild([1, 2, 3, 4, 5]) AS res
  • 通过聚合函数groupBitmapState来构造
    • groupBitmapState(arrayJoin(array)):将列值转换成bitmap,示例:
SELECT groupBitmapState(arrayJoin([1, 2, 3, 4, 5]))

2.3 创建bitmap表

create table user_tag_value_bitmap
 ( 
    tag_code String,
    tag_value String ,
    us AggregateFunction(groupBitmap,UInt64)
)engine=AggregatingMergeTree()
 partition by  (tag_code) 
 order by (tag_value);

Bitmap表必须选择AggregatingMergeTree引擎。

对应的Bitmap字段,必须是AggregateFunction(groupBitmap,UInt64),groupBitmap标识数据的聚合方式,UInt64标识最大可存储的数字长度。

2.4 操作bitmap

ClickHouse实现了大量的BitMap的函数,获取属性,集合运算等。包括但不限于:(所有函数可参照官网介绍)

  • bitmapToArray(bitmap) 将位图转换为整数数组
  • bitmapSubsetInRange(bitmap, range_start, range_end) 将位图指定范围(不含range_end)转换为另一个位图。
  • bitmapContains(haystack, needle) 检查位图是否包含指定元素。
  • bitmapAndnot(bitmap1,bitmap2) 计算两个位图的差异,返回一个新的位图对象。
  • bitmapCardinality(bitmap) 返回一个UInt64类型的数值,表示位图对象的基数。
  • groupBitmapState 将聚合列的数字值聚合成bitmap
  • groupBitmapMergeState 将一列中的bitmap值进行聚合
  • ……

2.5 应用场景

用户画像、行为分析(漏斗分析,留存分析)

1.用户画像:

  • 存储结构:按标签+用户ID列表的方式来进行存储,其中用户ID列表使用bitmap类型来节省存储空间。
  • 使用方法:通过标签可以快速找到相关人群进行推荐;对于多个标签查找共性用户的需求,可以通过bitmap集合运算函数来快速得到。
    在用户画像中,利用bitmap储存用户Id的人群包,同时利用位运算的与或非操作来计算多个人群包的交集并集,从而得到新人群。

2.漏斗分析:

  • 存储结构:uid collection 使用bitmap存储用于快速过滤数据 ,存储uid的sequence编码用于序列和时间窗口的匹配。
  • 使用方法:对动作的人员列表做预聚合,比如每天对前一天的元数据执行一次,将结果(Bitmap)保存到预聚合表中,查询时只对 Bitmap 做取交集获取基数。

3.留存分析:

  • 存储结构:uid collection 使用bitmap存储用于快速过滤数据 。
  • 使用方法:每天将结果保存到bitmap表中,查询时更新这个bitmap表并与今天的表进行关联并补全。

2.6 使用示例

1.用户画像:

使用groupArray:

SELECT
    tag_code_value.1 AS tag_code,
    tag_code_value.2 AS tag_value,
    groupArray(id) AS us
FROM (
SELECT
    arrayJoin([('browser', browser ),
    ('phone_model',phone_model ),
    ('isFirstUse',isFirstUse )]) AS tag_code_value,
    id
FROM users_all
) AS tv
GROUP BY
    tag_code_value.1,
    tag_code_value.2;

这里需要说明一下,聚合成bitmap的列没有显示是正常的,因为bitmap的结构本身无法用正常文本显示。

但是将聚合的值插入bitmap表(建表部分参照前面2.3部分),可以通过bitmapToArray函数验证。

select tag_code, tag_value , bitmapToArray(us) from user_tag_value_bitmap ;

最后bitmap对browser(浏览器版本),phone_model(手机型号),isFirstUse(是否初次使用)这三个用户属性的聚合结果如下:
在这里插入图片描述
这样之后,通过标签可以快速找到相关人群;非常满足对于多个标签查找共性用户的需求

select
bitmapToArray(
    bitmapAnd(
        (select   us from user_tag_value_bitmap
           where tag_value='Chrome' and tag_code='browser'),
        (select   us from user_tag_value_bitmap
            where tag_value='否' and tag_code='isFirstUse')
    )
)as res

select
bitmapToArray(
    bitmapAnd(
        (select groupBitmapMergeState(us) us from user_tag_value_bitmap
            where tag_value='Chrome' and tag_code='browser'),
        (select groupBitmapMergeState(us) from user_tag_value_bitmap
            where tag_value in ('iPhone 12','iPhone 13 Pro') and tag_code='phone_model')
    )
)as res

因为查询时,有可能需要针对某一个标签,取多个值,甚至是一个区间范围,那就会涉及多个值的userId集合,因此需要在子查询内部用groupBitmapMergeState进行一次合并,多个集合取并集。

另外,如果有多张tag表,进行交并计算(要比普通的用户表进行JOIN或者IN计算要高效很多):

with
(
    SELECT groupBitmapOrState(users) FROM tag_users WHERE tag_id = 'f'
) as user_group1,
(
    SELECT groupBitmapOrState(users) FROM tag_users2 WHERE tag_id = 'ff'
) as user_group2
select bitmapToArray(bitmapAnd(user_group1, user_group2));

2.漏斗分析:

使用windowFunnel:

with result as (select event.user_id as user_id, windowFunnel(86400)(time, (event.`event` = 'appEnter') and date >= '2023-06-14' and date <= '2023-06-20',
(event.`event` = 'beginLogModule'),
(event.`event` = 'buttonClick'),
(event.`event` = 'appExit')) AS level from app_events_all  event
 where date >= '2023-06-14' and date <= '2023-06-21' GROUP BY user_id)
select transform(level_index, [1, 2, 3, 4],['打开APP', '进入模块', '打开APP', '退出APP'], '其他' ) as event, count(distinct user_id) from (
select user_id,
arrayJoin(arrayEnumerate(arrayWithConstant(level, 1))) level_index
      FROM result
          )
group by level_index
order by level_index

对于实时漏斗分析查询来说,查询条件是变化多端的,做预聚合的前提是基于查询条件(WHERE 或 GROUP BY子句) 中的维度的,而对于 windowFunnel 函数,步骤条件、步骤执行顺序等条件均在函数内设置,无法外置,因此预聚合实施无法完成。

使用bitmap:

with
        (select groupBitmapState(sipHash64(user_id)) from app_events_all where event = 'appEnter' and date >= '2023-06-14' and date <= '2023-06-20') as appEnter,
        (select groupBitmapState(sipHash64(user_id)) from app_events_all where event = 'beginLogModule' and date >= '2023-06-14' and date <= '2023-06-21') as beginLogModule,
        (select groupBitmapState(sipHash64(user_id)) from app_events_all where event = 'buttonClick' and  date >= '2023-06-14' and date <= '2023-06-21') as buttonClick,
        (select groupBitmapState(sipHash64(user_id)) from app_events_all where event = 'appExit' and date >= '2023-06-14' and date <= '2023-06-21') as appExit

select bitmapCardinality(appEnter)   as num1,
       bitmapAndCardinality(appEnter, beginLogModule)  as num2,
       bitmapAndCardinality(bitmapAnd(appEnter, beginLogModule), buttonClick)  as num3,
       bitmapAndCardinality(bitmapAnd(bitmapAnd(appEnter, beginLogModule), buttonClick), appExit) as num4;

with 子句中分别获取了 4 个行为动作的人员列表( uid 列表( bitmap 类型)),在 select 中依次对 4 个动作的人员列表取交集,然后计算基数。

这样,我们就可以将 with 中的内容预聚合,比如每天对前一天的元数据执行一次,将结果(Bitmap)保存到预聚合表中,真正查询时只需要对 Bitmap 做取交集获取基数的操作就可以了,而且预聚合后数据量会急剧减少,性能方面有极大的提升;

但是!!!这里不得不提及关于漏斗分析,bitmap无法做到的点,Bitmap 的与(And)操作是不区分前后顺序的,也就是说,bitmapAndCardinality(appEnter, beginLogModule) 与 bitmapAndCardinality(beginLogModule, appEnter) 是等价的。由此可见,如果想要用 Bitmap 来进行操作,元数据必须要从用户操作和业务上保证严格意义上的顺序,也就是说,用户只有这一条行为操作路径,否则统计会产生严重的误差。另外,Bitmap无法进行窗口期限制,不能保证动作链路在某一规定的时间内完成。

所以,总体来说,在做漏斗分析时,bitmap在无窗口期限制的无序漏斗上是非常适合的,而有序漏斗需要确保动作链路的严格顺序一致性,这里仅仅使用bitmap是无法实现的。

至于有序漏斗该如何有效利用bitmap,则可以先使用bitmap结构存储相关用户行为数据,在此基础上通过UUID集合做快速的过滤,再对过滤后的UUID分别做时间戳的匹配,同时上一层节点输出也作为下一层节点的输入,设计一套流程算法,由此达到快速过滤的目的 。

详细的设计流程在美团点评的一篇技术文章,可以用来参考:

https://tech.meituan.com/2018/03/20/user-funnel-analysis-design-build.html

3.留存分析:

使用rentention:

  SELECT
        sum(r[1]) AS r1,
        sum(r[2]) AS r2,
        r2/r1
    FROM
    (
    select user_id,
           retention(date='2021-05-01' and event = '启动',date='2021-05-03' and event = '首页') AS r
           from  analyse_testb where   date >= '2021-05-01' and  date  <= '2021-05-03'
               group by user_id );
  #案例:用户留存
SELECT

    SUM(r[1]) AS "第1天活跃用户",
    SUM(r[2])/SUM(r[1]) AS "次日留存",
    SUM(r[3])/SUM(r[1]) AS "3日留存",
    SUM(r[4])/SUM(r[1]) AS "7日留存"
FROM
    (
        WITH
            first_day_table AS ( SELECT TIMESTAMP '2021-05-01 00:00:00' AS first_day)
        SELECT
            user_id,
            retention(
                date = (SELECT DATE(first_day) FROM first_day_table),
                date = (SELECT DATE(first_day +  INTERVAL 1 DAY) FROM first_day_table),
                date = (SELECT DATE(first_day +  INTERVAL 2 DAY) FROM first_day_table),
                date = (SELECT DATE(first_day +  INTERVAL 6 DAY) FROM first_day_table)
                ) AS r
            FROM    analyse_testb
            WHERE   (date >= TIMESTAMP '2021-05-01 00:00:00')
            AND     (date <= TIMESTAMP '2021-05-01 00:00:00' + INTERVAL '6 day')
            GROUP BY user_id
        );

使用bitmap:

select event,bitmapAndCardinality(
    neighbor(bmp,-1), bmp
) retetion
FROM (
    select event, groupBitmapState(sipHash64(user_id)) bmp FROM analyse_testb
    where  date >= '2021-05-01' and  date  <= '2021-05-03'
    GROUP BY event order by event
)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值