最大子数组和
给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素)返回其最大和.子数组是数组中的一个连续部分。
首先如果按照原题的话 其实还是很简单的 直接用动态规划就出来了(写了两种方法,一个是空间复杂度为N的,一个是空间复杂度为1的)
public class Solution008 {
public static void main(String[] args) {
int[] nums = new int[]{-2,1,-3,4,-1,2,1,-5,4};
System.out.println(maxSubArray(nums));
maxSubArray3(nums);
}
//空间复杂度N
public static int maxSubArray(int[] nums) {
int[] dp = new int[nums.length];
dp[0]=0;
int ans=dp[0];
for(int i=1;i<nums.length;i++){
dp[i] = Math.max(dp[i],dp[i-1]+nums[i]);
ans = Math.max(ans,dp[i]);
}
return ans;
}
//空间复杂度1
public static int maxSubArray2(int[] nums) {
int pre=0,ans=nums[0];//pre用于存放每个每个位置之前的最大值
for (int num : nums){
pre = Math.max(num,num+pre);//当前位置的最大子数组的和
ans = Math.max(pre,ans);//更新最大的子数组的和
}
return ans;
}
}
但是看到一个拓展和变形:让返回的不是最大的结果,而是这个最大结果的子数组!!!
这边的话需要在动态规划之前设置一个起点(start),以及长度(len)(指当前子数组的长度),然后在动态规划的过程中进行判断:
- 当dp[i-1]+nums[i]>nums[i]时,说明子序列在正增长,所以这个时候子序列的起点保持,然后长度len++
- 当dp[i-1]+nums[i]<nums[i]时,说明子序列在负增长,所以这个时候子序列的起点要变为当前节点,同时长度len置为1
- 然后将每次的最大情况的start和len在循环的时候进行判断,就可以找到最终答案了,具体看maxSubArray3这个函数
//求这个最大结果的子数组 返回的是子数组不是最大的结果
public static int[] maxSubArray3(int[] nums) {
int ans = nums[0];
int[] dp = new int[nums.length];
int start = 0, len = 1;//初始化子数组的起点以及长度
int maxStart=0,macLen=1;
for (int i=1;i<nums.length;i++){
//dp[i] = Math.max(dp[i-1] + nums[i], nums[i]); // 是继续在后面添加,还是另起一个新序列
if(nums[i]>dp[i-1]+nums[i]){
//另起一个新序列
dp[i] = nums[i];
start = i;//新的序列的起点就是i
len = 1;
}else{
//在后面添加
dp[i] = dp[i-1] + nums[i];
len++;
}
if(dp[i]>ans){
ans = dp[i];
maxStart = start;
macLen = len;
}
}
System.out.println("最大最大子数组的和为:"+ans);
System.out.println(Arrays.toString(Arrays.copyOfRange(nums,maxStart,maxStart+macLen)));
return Arrays.copyOfRange(nums,maxStart,maxStart+macLen);
}