CodeTop008 最大子数组和

最大子数组和
给你一个整数数组nums,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素)返回其最大和.子数组是数组中的一个连续部分。
首先如果按照原题的话 其实还是很简单的 直接用动态规划就出来了(写了两种方法,一个是空间复杂度为N的,一个是空间复杂度为1的)

public class Solution008 {
    public static void main(String[] args) {
        int[] nums = new int[]{-2,1,-3,4,-1,2,1,-5,4};
        System.out.println(maxSubArray(nums));
        maxSubArray3(nums);
    }

    //空间复杂度N
    public static int maxSubArray(int[] nums) {

        int[] dp = new int[nums.length];
        dp[0]=0;
        int ans=dp[0];

        for(int i=1;i<nums.length;i++){
            dp[i] = Math.max(dp[i],dp[i-1]+nums[i]);
            ans = Math.max(ans,dp[i]);
        }

        return ans;
    }

    //空间复杂度1
    public static int maxSubArray2(int[] nums) {
        int pre=0,ans=nums[0];//pre用于存放每个每个位置之前的最大值
        for (int num : nums){
            pre = Math.max(num,num+pre);//当前位置的最大子数组的和
            ans = Math.max(pre,ans);//更新最大的子数组的和
        }
        return ans;
    }
}

但是看到一个拓展和变形:让返回的不是最大的结果,而是这个最大结果的子数组!!!
这边的话需要在动态规划之前设置一个起点(start),以及长度(len)(指当前子数组的长度),然后在动态规划的过程中进行判断:

  • 当dp[i-1]+nums[i]>nums[i]时,说明子序列在正增长,所以这个时候子序列的起点保持,然后长度len++
  • 当dp[i-1]+nums[i]<nums[i]时,说明子序列在负增长,所以这个时候子序列的起点要变为当前节点,同时长度len置为1
  • 然后将每次的最大情况的start和len在循环的时候进行判断,就可以找到最终答案了,具体看maxSubArray3这个函数
//求这个最大结果的子数组 返回的是子数组不是最大的结果
    public static int[] maxSubArray3(int[] nums) {
        int ans = nums[0];
        int[] dp = new int[nums.length];
        int start = 0, len = 1;//初始化子数组的起点以及长度
        int maxStart=0,macLen=1;

        for (int i=1;i<nums.length;i++){
            //dp[i] = Math.max(dp[i-1] + nums[i], nums[i]); // 是继续在后面添加,还是另起一个新序列
            if(nums[i]>dp[i-1]+nums[i]){
                //另起一个新序列
                dp[i] = nums[i];
                start = i;//新的序列的起点就是i
                len = 1;
            }else{
                //在后面添加
                dp[i] =  dp[i-1] + nums[i];
                len++;
            }

            if(dp[i]>ans){
                ans = dp[i];
                maxStart = start;
                macLen = len;
            }
        }

        System.out.println("最大最大子数组的和为:"+ans);
        System.out.println(Arrays.toString(Arrays.copyOfRange(nums,maxStart,maxStart+macLen)));
        return Arrays.copyOfRange(nums,maxStart,maxStart+macLen);
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值