考研高数常用公式汇总(上)

写在前面:

一、高等数学预备知识

1.函数奇偶性
(1) F ( x ) = f ( x ) − f ( − x ) F(x)=f(x)-f(-x) F(x)=f(x)f(x)必为奇函数, F ( x ) = f ( x ) + f ( − x ) F(x)=f(x)+f(-x) F(x)=f(x)+f(x)必为偶函数.
(2)导数与积分奇偶性
∫ a x f ( t ) d t \int_{a}^{x} f(t)dt axf(t)dt f ( x ) f(x) f(x) f ′ ( x ) {f}' (x) f(x)
偶函数 奇函数 偶函数
奇函数 偶函数 奇函数
∫ 0 T f ( x ) d x = 0 \int_{0}^{T} f(x)dx=0 0Tf(x)dx=0时,周期为T 周期为T 周期为T
(3)奇偶函数运算

奇 函 数 × 奇 函 数 = 偶 函 数 奇函数\times 奇函数 = 偶函数 ×=
奇 函 数 × 偶 函 数 = 奇 函 数 奇函数\times 偶函数 = 奇函数 ×=
偶 函 数 × 偶 函 数 = 偶 函 数 偶函数\times 偶函数 = 偶函数 ×=

奇 函 数 + 奇 函 数 = 奇 函 数 奇函数 + 奇函数 = 奇函数 +=
偶 函 数 + 偶 函 数 = 偶 函 数 偶函数 + 偶函数 = 偶函数 +=

2.三角函数相关公式

a r c t a n α + a r c c o t α = π 2 arctan\alpha+arccot\alpha =\frac{\pi}{2} arctanα+arccotα=2π

1 + t a n 2 α = s e c 2 α 1+tan^{2}\alpha =sec^{2}\alpha 1+tan2α=sec2α

1 + c o t 2 α = c s c 2 α 1+cot^{2}\alpha =csc^{2}\alpha 1+cot2α=csc2α

s i n 3 α = − 4 s i n 3 α + 3 s i n α sin3\alpha=-4sin^{3} \alpha+3sin\alpha sin3α=4sin3α+3sinα

c o s 3 α = 4 c o s 3 α − 3 c o s α cos3\alpha=4cos^{3} \alpha-3cos\alpha cos3α=4cos3α3cosα

s i n ( α ± β ) = s i n α c o s β ± c o s α s i n β sin(\alpha\pm\beta)=sin\alpha cos\beta\pm cos\alpha sin \beta sin(α±β)=sinαcosβ±cosαsinβ

c o s ( α ± β ) = c o s α c o s β ∓ s i n α s i n β cos(\alpha\pm\beta)=cos\alpha cos\beta \mp sin\alpha sin \beta cos(α±β)=cosαcosβsinαsinβ

t a n ( α ± β ) = t a n α ± t a n β 1 ∓ t a n α t a n β tan(\alpha\pm\beta)=\frac{tan\alpha\pm tan\beta}{1\mp tan\alpha tan\beta } tan(α±β)=1tanαtanβtanα±tanβ

万能公式: u = t a n x 2 ⇒ s i n x = 2 u 1 + u 2 , c o s x = 1 − u 2 1 + u 2 u=tan\frac{x}{2} \Rightarrow sinx=\frac{2u}{1+u^{2} } ,cosx=\frac{1-u^{2}}{1+u^{2}} u=tan2xsinx=1+u22u,cosx=1+u21u2

3.数列、因式分解
(1)等比数列
等比数列 a 1 , a 1 r , a 1 r 2 , ⋯   , a 1 r n − 1 a_{1} ,a_{1}r,a_{1}r^{2} ,\cdots ,a_{1}r^{n-1} a1,a1r,a1r2,,a1rn1
通项 a n = a 1 r n − 1 a_{n}=a_{1}r^{n-1} an=a1rn1
前n项和 S n = a 1 ( 1 − r n ) 1 − r S_{n}=\frac{a_{1}(1-r^{n} ) }{1-r} Sn=1ra1(1rn) ( r ≠ 1 ) (r≠1) (r=1)
∣ r ∣ < 1 \mid r\mid < 1 r<1 lim ⁡ n → ∞ a n = 0 \lim_{n \to \infty} a_{n} =0 limnan=0
S n = a 1 1 − r S_{n}=\frac{a_{1} }{1-r} Sn=1ra1 S n = 首 项 1 − 公 比 S_{n}=\frac{首项 }{1-公比} Sn=1
(2)数列绝对值性质

lim ⁡ n → ∞ a n = A ⇒ lim ⁡ n → ∞ ∣ a n ∣ = ∣ A ∣ \lim_{n \to \infty} a_{n} =A\Rightarrow \lim_{n \to \infty} \mid a_{n}\mid =\mid A \mid limnan=Alimnan=A

lim ⁡ n → ∞ a n = 0 ⇔ lim ⁡ n → ∞ ∣ a n ∣ = 0 \lim_{n \to \infty} a_{n} =0\Leftrightarrow \lim_{n \to \infty} \mid a_{n}\mid =0 limnan=0limnan=0

(3)3次幂的因式分解

( a + b ) 3 = a 3 + 3 a 2 b + 3 a b 2 + b 3 (a+b)^{3} =a^{3} +3a^{2} b +3ab^{2}+ b^{3} (a+b)3=a3+3a2b+3ab2+b3

( a − b ) 3 = a 3 − 3 a 2 b + 3 a b 2 − b 3 (a-b)^{3} =a^{3} -3a^{2} b +3ab^{2}- b^{3} (ab)3=a33a2b+3ab2b3

a 3 − b 3 = ( a − b ) ( a 2 + a b + b 2 ) a^{3}-b^{3} =(a-b)(a^{2} +ab+b^{2}) a3b3=(ab)(a2+ab+b2)

4.常用不等式
(1)基本不等式

a b ≤ a + b 2 ≤ a 2 + b 2 2 \sqrt{ab} \le \frac{a+b}{2} \le \sqrt{\frac{a^{2}+b^{2} }{2} } ab 2a+b2a2+b2

∣ a b ∣ ≤ a 2 + b 2 2 \mid ab\mid \le \frac{a^{2}+b^{2} }{2} ab2a2+b2

∣ ∫ a b f ( x ) d x ∣ ≤ ∫ a b ∣ f ( x ) ∣ d x \mid \int_{a}^{b} f(x) dx\mid \le \int_{a}^{b} \mid f(x)\mid dx abf(x)dxabf(x)dx

(2) x → 0 + x\to 0^{+} x0+邻域的不等式

s i n x < x < t a n x sinx< x <tanx sinx<x<tanx

a r c t a n x < x < a r c s i n x arctanx< x <arcsinx arctanx<x<arcsinx

e x ≥ x + 1 e^{x} \ge x+1 exx+1

ln ⁡ x ≤ x − 1 \ln{x} \le x-1 lnxx1

ln ⁡ ( x + 1 ) ≤ x \ln{(x+1)} \le x ln(x+1)x

二、极限

1.常用泰勒公式 ( x → 0 ) (x\to0) (x0)

s i n x = x − x 3 3 ! + o ( x 3 ) sinx=x-\frac{x^{3} }{3!} +o(x^{3}) sinx=x3!x3+o(x3)

a r c s i n x = x + x 3 3 ! + o ( x 3 ) arcsinx=x+\frac{x^{3} }{3!} +o(x^{3}) arcsinx=x+3!x3+o(x3)

c o s x = 1 − x 2 2 ! + x 4 4 ! + o ( x 3 ) cosx=1-\frac{x^{2} }{2!}+\frac{x^{4} }{4!}+o(x^{3}) cosx=12!x2+4!x4+o(x3)

t a n x = x + x 3 3 + o ( x 3 ) tanx=x+\frac{x^{3} }{3} +o(x^{3}) tanx=x+3x3+o(x3)

a r c t a n x = x − x 3 3 + o ( x 3 ) arctanx=x-\frac{x^{3} }{3} +o(x^{3}) arctanx=x3x3+o(x3)

l n ( 1 + x ) = x − x 2 2 + x 3 3 + o ( x 3 ) ln(1+x)=x-\frac{x^{2} }{2}+\frac{x^{3}}{3}+o(x^{3}) ln(1+x)=x2x2+3x3+o(x3)

e x = 1 + x + x 2 2 ! + x 3 3 ! + o ( x 3 ) e^{x} =1+x+\frac{x^{2} }{2!}+\frac{x^{3}}{3!}+o(x^{3}) ex=1+x+2!x2+3!x3+o(x3)

a x = 1 + x l n a + l n 2 a 2 ! x 2 + l n 3 a 3 ! x 3 + o ( x 3 ) a^{x} =1+xlna+\frac{ln^2a}{2!}x^{2}+\frac{ln^3a}{3!}x^{3}+o(x^{3}) ax=1+xlna+2!ln2ax2+3!ln3ax3+o(x3)

( 1 + x ) α = 1 + α x + α ( α − 1 ) 2 ! x 2 + o ( x 2 ) (1+x)^{\alpha}=1+\alpha x+\frac{\alpha(\alpha - 1)}{2!} x^{2} +o(x^{2}) (1+x)α=1+αx+2!α(α1)x2+o(x2)

2.无穷小定义
α ( x ) \alpha (x) α(x) β ( x ) \beta (x) β(x) 定义
高阶无穷小 lim
  • 8
    点赞
  • 35
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值