超平面的法向量与距离公式


1、超平面一般表示形式

在n维空间中,设任意点坐标为
x = [ x ( 1 ) , x ( 2 ) , . . . x ( n ) ] T ∈ R n x=[x^{(1)},x^{(2)},...x^{(n)}]^T\in{R^n} x=[x(1),x(2),...x(n)]TRn

设超平面参数
w = [ w ( 1 ) , w ( 2 ) , . . . w ( n ) ] T ∈ R n w=[w^{(1)},w^{(2)},...w^{(n)}]^T\in{R^n} w=[w(1),w(2),...w(n)]TRn

b ∈ R b\in{R} bR

则超平面方程可表示为
w T x + b = 0 (1) w^T x+b=0\tag{1} wTx+b=0(1)


2、超平面的法向量

超平面的法向量满足:超平面中任意向量都与该法向量垂直。设超平面上的两个点为 x 1 x_1 x1 x 2 x_2 x2,分别满足:
w T x 1 + b = 0 (2) w^T x_1+b=0\tag{2} wTx1+b=0(2)

w T x 2 + b = 0 (3) w^T x_2+b=0\tag{3} wTx2+b=0(3)

两式相减,可得
w T ( x 1 − x 2 ) = 0 (4) w^T (x_1-x_2)=0\tag{4} wT(x1x2)=0(4)

v = ( x 1 − x 2 ) \bm{v}=(x_1-x_2) v=(x1x2),由于 x 1 x_1 x1 x 2 x_2 x2是任取的,故 v \bm{v} v 表示超平面上的任意向量。这时我们可以发现,式 ( 4 ) (4) (4)的含义恰好是:平面上任意一个向量都与 w w w 相互垂直,因此 w w w 就是超平面 w T x + b = 0 w^T x+b=0 wTx+b=0的一个法向量。


3、点到超平面的距离

记超平面外一点为 x 0 x_0 x0 ,记点 x 3 x_3 x3 在超平面 w T ⋅ x + b = 0 w^T\cdot x+b=0 wTx+b=0上的投影点为 x 0 ′ x_0' x0,满足:
w T ⋅ x 0 ′ + b = 0 (5) w^T\cdot x_0'+b=0\tag{5} wTx0+b=0(5)

则有向量 u = ( x 0 − x 0 ′ ) \bm{u}=(x_0-x_0') u=(x0x0) 与平面 w T x + b = 0 w^T x+b=0 wTx+b=0的法向量 w \bm{w} w互相平行,则两者的数量积:
w T ( x 0 − x 0 ′ ) = w ⋅ ( x 0 − x 0 ′ ) = ∣ w ∣ ∗ ∣ x 0 − x 0 ′ ∣ ∗ c o s ( 0   o r   π ) = ± ∣ w ∣ ∗ d (6) w^T(x_0-x_0')=w\cdot (x_0-x_0')=|w|*|x_0-x_0'|*cos(0~or~\pi)=\pm|w|*d\tag{6} wT(x0x0)=w(x0x0)=wx0x0cos(0 or π)=±wd(6)

其中 d = ∣ x 0 − x 0 ′ ∣ d=|x_0-x_0'| d=x0x0 即为待求的点到超平面间的距离。

另一方面,根据式 ( 5 ) (5) (5)消去可得

w T ( x 0 − x 0 ′ ) = w T x 0 − w T x 0 ′ = w T x 0 − ( − b ) = w T x 0 + b (7) w^T(x_0-x_0')=w^Tx_0-w^Tx_0'=w^Tx_0-(-b)=w^Tx_0+b\tag{7} wT(x0x0)=wTx0wTx0=wTx0(b)=wTx0+b(7)

结合 ( 6 ) ( 7 ) (6)(7) (6)(7),考虑到 d ≥ 0 d\ge0 d0,可得
d = ∣ w T x 0 + b ∣ ∣ w ∣ (8) d=\frac{|w^Tx_0+b|}{|w|}\tag{8} d=wwTx0+b(8)

这里上式中的 ∣ w ∣ |w| w 表示 w w w 的模长,模长作为绝对值概念的推广,在欧式空间中,模长常常称为L2范数(也称为Euclidean范数或者Frobenius范数)
∣ ∣ w ∣ ∣ F = ( w ( 1 ) ) 2 + ( w ( 2 ) ) 2 + . . . + ( w ( n ) ) 2 ||w||_F=\sqrt{(w^{(1)})^2+(w^{(2)})^2+...+(w^{(n)})^2} wF=(w(1))2+(w(2))2+...+(w(n))2

所以, d d d 的表达式即为:
d = ∣ w T x 0 + b ∣ ∣ ∣ w ∣ ∣ F (9) d=\frac{|w^Tx_0+b|}{||w||_F}\tag{9} d=wFwTx0+b(9)

这样来看,平面直角坐标系下的点到直线距离公式便是上式的一个特例。


4、平行超平面之间的距离公式

趁热打铁,继续推导平行超平面间的距离公式,设两个不重合的平行超平面分别为:
w 1 T x + b 1 = 0 w_1^T x+b_1=0 w1Tx+b1=0

w 2 T x + b 2 = 0 w_2^T x+b_2=0 w2Tx+b2=0

由于两个超平面互相平行,因此由 2 2 2 中对法向量的讨论可知,两个超平面的法向量互相平行,我们取两个互相重合的法向量,即
w = w 1 = w 2 w=w_1=w_2 w=w1=w2

则可得
w T x + b 1 = 0 (10) w^T x+b_1=0\tag{10} wTx+b1=0(10)

w T x + b 2 = 0 (11) w^T x+b_2=0\tag{11} wTx+b2=0(11)

P ( x 0 ) P(x_0) P(x0) 为平面1上的一个点,即满足:
w T x 0 + b 1 = 0 (12) w^Tx_0+b_1=0\tag{12} wTx0+b1=0(12)

则根据点到超平面的距离公式可得点 P ( x 0 ) P(x_0) P(x0) 到超平面2的距离 d d d 满足:
d = ∣ w T x 0 + b 2 ∣ ∣ ∣ x 0 ∣ ∣ F = ∣ − b 1 + b 2 ∣ ∣ ∣ w ∣ ∣ F d=\frac{|w^Tx_0+b_2|}{||x_0||_F}=\frac{|-b_1+b_2|}{||w||_F} d=x0FwTx0+b2=wFb1+b2

上式最后一步用到了式 ( 12 ) (12) (12)。最后我们得到了平行超平面之间的距离公式为
d = ∣ b 2 − b 1 ∣ ∣ ∣ w ∣ ∣ F (13) d=\frac{|b_2-b_1|}{||w||_F}\tag{13} d=wFb2b1(13)

  • 20
    点赞
  • 64
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值