3. 基于协同学习机制的 CNN 肺肿瘤图像融合
3.1 网络架构
三部分:
- 两个独立的编码器
- 协同学习与融合模块
- 图像重建部分
3.1.1 特定模态编码器
编码器:
(卷积层×2+最大池化层)×3
每一 次卷积后都进行以 0 为均值,单位方差分布的归一化。
归一化之后再使用 LeakyReLU 函数进行激活。
卷积层输出:
F = L e a k y R e L U ( W ∗ X + b ) F = LeakyReLU(W*X+b) F=LeakyReLU(W∗X+b)
3.1.2 协同学习CNN激活函数
ReLU
LeakyReLU
3.1.3 协同学习CNN损失函数
交叉熵损失函数
e = − [ y l o g ( p ) + ( 1 − y ) l o g ( 1 − p ) ] e = -[ylog(p)+(1-y)log(1-p)] e=−[ylog(p)+(1−y)log(1−p)]
3.1.4 多模态特征协同学习和融合模块
(1)协同学习
两部分:
协同学习单元
融合操作
F C T : w ∗ h ∗ c F_{CT}: w*h*c FCT:w∗h∗c
F P E T : w ∗ h ∗ c F_{PET}: w*h*c FPET:w∗h∗c
穿插堆叠: X m u l t i : w ∗ h ∗ 2 c X_{multi}: w*h*2c Xmulti:w∗h∗2c
卷积核: j ∗ j ∗ m j*j*m j∗j∗m,m是模态数=2
融合图计算公式:
F f u s i o n = L e a