论文阅读:基于深度学习的肺肿瘤PET-CT图像融合

3. 基于协同学习机制的 CNN 肺肿瘤图像融合


3.1 网络架构


image.png
三部分:

  • 两个独立的编码器
  • 协同学习与融合模块
  • 图像重建部分

3.1.1 特定模态编码器


编码器:
(卷积层×2+最大池化层)×3

每一 次卷积后都进行以 0 为均值,单位方差分布的归一化。
归一化之后再使用 LeakyReLU 函数进行激活。

卷积层输出:
F = L e a k y R e L U ( W ∗ X + b ) F = LeakyReLU(W*X+b) F=LeakyReLU(WX+b)

image.png

3.1.2 协同学习CNN激活函数


ReLU
LeakyReLU

3.1.3 协同学习CNN损失函数


交叉熵损失函数

e = − [ y l o g ( p ) + ( 1 − y ) l o g ( 1 − p ) ] e = -[ylog(p)+(1-y)log(1-p)] e=[ylog(p)+(1y)log(1p)]

3.1.4 多模态特征协同学习和融合模块


(1)协同学习

两部分:
协同学习单元
融合操作

F C T : w ∗ h ∗ c F_{CT}: w*h*c FCT:whc
F P E T : w ∗ h ∗ c F_{PET}: w*h*c FPET:whc
穿插堆叠: X m u l t i : w ∗ h ∗ 2 c X_{multi}: w*h*2c Xmulti:wh2c
卷积核: j ∗ j ∗ m j*j*m jjm,m是模态数=2

融合图计算公式:
F f u s i o n = L e a

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值