图像融合
文章平均质量分 91
BulingQAQ
这个作者很懒,什么都没留下…
展开
-
论文阅读:基于深度学习的肺肿瘤PET-CT图像融合
将不同模态的图像分别作为 Content 图像与 Style 图像作为输入查看融合结果, 将两个模态的输入进行互换再次查看输出结果。在每个特征层中,每个数字代表了特定位置的特定卷积核卷积所得到的结果,反映了相应特征的显著程度和两两特征之间的相关性。PET 图像的分辨率 为 168×168,CT 图像的分辨率为 512×512。Gram 矩阵是一种基于特征表示的统计方法,通常用于计算输入图像的风格信息。Gram 矩阵的计算可以通过将该特征图重塑为一个大小为 C×H×W 的矩阵,原创 2024-10-10 21:56:01 · 1214 阅读 · 0 评论 -
论文阅读:PET/CT Cross-modal medical image fusion of lung tumors based on DCIF-GAN
基于GAN的融合方法存在训练不稳定,提取图像的局部和全局上下文语义信息能力不足,交互融合程度不够等问题。原创 2024-09-29 22:08:27 · 1286 阅读 · 0 评论 -
论文阅读:多模态医学图像融合方法的研究进展
基于深度学习的多模态医学图像融合算法仍是主流方法。最新的方法进展不但运用了深度学习模型,而且在特征提取阶段结合了传统方法以优化细节,提高融合质量。原创 2024-09-29 19:19:12 · 1335 阅读 · 0 评论