摘要
背景:
多模态融合技术可将多模态的医学图像融合到单模态的图像中,且单模态图像具有多种模态图像间的互补信息, 从而在单一图像中得到充足的便于临床诊断的信息。
贡献:
本文将多模态医学图像融合方法整理为两种,分别为传统融合方法和基于深度学习的融合方法。
0. 引言
图像融合是图像处理的子领域。
多模态医学图像:MRI、CT、PET、SPECT、US。
1. 传统融合方法
多尺度变换(MST)、稀疏表示(SR)、基于子空间、基于显著特征、混合模型
MST:
基于MST的方法包括多尺度分解、多尺度融合和多尺度重建等步骤。
- 具有多个特征的联合拉普拉斯金字塔方法
- 使用高斯滤波技术提高图像质量,然后使用离散小波变换增强融合图像的效果
- 从一组结合一系列稀疏系数的训练图像中学习到的过完整字典中生成融合图像
- 将已配准的医学图像按照块的几何方向划分为分类块
- 使用稀疏表示和邻域能量活动算子将源图像分为基础层和细节层
- 具有组稀疏性和图正则化的字典学习(DL-GSGR)
基于子空间:
主要包括主成分分析(PCA)、独立成分分析(ICA)和非负矩阵分解(NMF)。
- 将强度-色调-饱和度变换和主成分分析相结合
- 基于DWT和 ICA的图像融合