【Python数据分析 - 4】:了解Numpy、Numpy的属性

了解Numpy

numpy 是python的一种开源的数值计算扩展,支持大量的维度数组与矩阵运算

简单测试numpy在数值计算上的优势
import numpy as np
import time
import random
a = []

for i in range(100000000):
    a.append(random.random()) # 生成0-1之间的浮点数
    
t1 = time.time()
sum1 = sum(a)	# 求和
t2 = time.time()

b = np.array(a)
t3 = time.time()
sum2 = np.sum(b)	# numpy中的求和
t4 = time.time()

print(t2-t1)
print(t4-t3)
  • 运行结果,从运行结果看,numpy中的求和耗费的时间更短
    在这里插入图片描述

Numpy的属性

ndarray n维数组,主要存储相同的数据类型和数据集合

创建二维数组在这里插入图片描述
查看数组的形状

在这里插入图片描述

查看数组的维度

在这里插入图片描述

查看数组中元素的数量

在这里插入图片描述

查看每个元素所占的长度(字节位数)

创建二维度数组

在这里插入图片描述

查看所有元素所占的总字节

在这里插入图片描述

获取数组的类型

在这里插入图片描述

改变数组的数据类型

在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

街 三 仔

你的鼓励是我创作的最大动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值