【某高中的暑假作业】数学思维题

(1)证明 49 , 4489 , 444889 , 44448889 … 49,4489,444889,44448889… 49,4489,444889,44448889均为完全平方数
解:
f ( n ) = 4 ∑ i = n 2 n − 1 1 0 i + 8 ∑ i = 1 n − 1 1 0 i + 9 ( n ≥ 1 ) f(n)=4\sum_{i=n}^{2n-1}{10^i}+8\sum_{i=1}^{n-1}{10^i}+9 (n\ge1) f(n)=4i=n2n110i+8i=1n110i+9(n1)
接着套等比数列公式,得 f ( n ) = 4 9 ( 1 0 2 n − 1 0 n ) + 8 9 ( 1 0 n − 10 ) + 9 f(n)=\frac{4}{9}{(10^{2n}-10^n)}+\frac{8}{9}{(10^{n}-10)}+9 f(n)=94(102n10n)+98(10n10)+9
化简,得 f ( n ) = 4 ( 1 0 n ) 2 + 4 ( 1 0 n ) + 1 9 = ( 2 × 1 0 n + 1 ) 2 9 f(n)=\frac{4(10^n)^2+4(10^n)+1}{9}=\frac{(2\times10^n+1)^2}{9} f(n)=94(10n)2+4(10n)+1=9(2×10n+1)2
开方,得 f ( n ) = 2 × 1 0 n + 1 3 \sqrt{f(n)}=\frac{2\times10^n+1}{3} f(n) =32×10n+1
因为 2 × 1 0 n + 1 ≡ 0 ( m o d   3 ) ( n ≥ 1 ) 2\times10^n+1≡0(mod \ 3) (n\ge1) 2×10n+10(mod 3)(n1)
所以 f ( n ) ( n ≥ 1 ) \sqrt{f(n)}(n\ge1) f(n) (n1)均为正整数
因此 f ( n ) ( n ≥ 1 ) f(n)(n\ge1) f(n)(n1)均为完全平方数
(2)已知 a , b , c , d a,b,c,d a,b,c,d为实数,且满足条件 a + b + c + d + e = 8 , a 2 + b 2 + c 2 + d 2 + e 2 = 16 a+b+c+d+e=8,a^2+b^2+c^2+d^2+e^2=16 a+b+c+d+e=8,a2+b2+c2+d2+e2=16求实数 e e e的取值范围
解:
n n n个实数的和为 k k k时,其平方和的最小值为 n ( n k ) 2 n(\frac{n}{k})^2 n(kn)2
首先考虑正数范围内的下限,e可以取0,证明略
因为 e 2 = ( − e ) 2 e^2=(-e)^2 e2=(e)2,所以使e在满足条件的情况下,尽可能在正数范围内大或在负数范围内小,都需要使得 a 2 + b 2 + c 2 + d 2 a^2+b^2+c^2+d^2 a2+b2+c2+d2尽可能小,同时考虑e的正数范围内的上限的负数范围内的下限
当e确定时, a 2 + b 2 + c 2 + d 2 a^2+b^2+c^2+d^2 a2+b2+c2+d2最小值为 4 ( 8 − e 4 ) 2 4(\frac{8-e}{4})^2 4(48e)2
设e在正数范围内的上限的负数范围内的下限为E
所以 E 2 + 4 ( 8 − E 4 ) 2 = 16 E^2+4(\frac{8-E}{4})^2=16 E2+4(48E)2=16
解得 E 1 = 16 5 , E 2 = 0 ( 舍 ) E1=\frac{16}{5},E2=0(舍) E1=516,E2=0()
因此 0 ≤ e ≤ 16 5 0\le e \le \frac{16}{5} 0e516

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值