在当今数据驱动的时代,图结构数据广泛存在于众多领域,如社交网络、生物信息学、推荐系统等。传统的深度学习模型在处理这类具有复杂关系的数据时往往力不从心,而图神经网络(Graph Neural Networks,GNN)的出现,为处理图结构数据提供了强大的工具。那么,究竟什么是图神经网络GNN呢?
图神经网络(GNN)的定义
图神经网络(Graph Neural Networks,GNN)是一类专门用于处理图结构数据的深度学习模型。图结构数据由节点(vertices/nodes)和边(edges)组成,节点代表实体,边代表实体之间的关系。例如,在社交网络中,用户是节点,用户之间的好友关系是边;在分子结构中,原子是节点,化学键是边。
GNN的核心思想
GNN的核心思想是通过聚合邻居节点的信息来更新当前节点的表示。具体来说,每个节点都有其初始的特征向量,在图神经网络的每一层中,节点会收集其邻居节点的特征信息,并结合自身的特征进行更新。经过多层这样的聚合和更新操作后,节点能够学习到图结构中更丰富的语义信息。
免费分享一套人工智能入门学习资料给大家,如果你想自学,这套资料非常全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】
GNN的关键组件与工作流程
关键组件
- 聚合函数(Aggregation Function):用于收集邻居节点的信息。常见的聚合函数有求和(Sum)、平均(Mean)、最大值(Max)等。例如,使用求和聚合函数时,将邻居节点的特征向量相加,得到一个聚合后的向量。
- 更新函数(Update Function):将聚合后的邻居节点信息与当前节点的特征进行融合,更新当前节点的表示。通常使用神经网络(如多层感知机MLP)来实现更新函数。
工作流程
以下以一个简单的两层GNN为例说明其工作流程:
- 输入层:假设图中有n个节点,每个节点的初始特征向量为hv(0),其中v表示节点编号,(0)表示第0层(输入层)。
- 第一层:
- 对于每个节点v,收集其邻居节点u∈N(v)的特征向量,其中N(v)表示节点v的邻居节点集合。
- 使用聚合函数对邻居节点的特征向量进行聚合,得到聚合后的向量av(1)。例如,若采用求和聚合函数,则av(1)=∑u∈N(v)hu(0)。
- 将聚合后的向量av(1)和当前节点v的特征向量hv(0)输入到更新函数中,得到更新后的节点表示hv(1)。例如,更新函数可以是一个简单的线性变换加激活函数:hv(1)=σ(W(1)[hv(0)∥av(1)]+b(1)),其中W(1)和b(1)是可学习的参数,σ是激活函数,∥表示向量的拼接操作。
- 第二层:重复第一层的操作,将第一层得到的节点表示hv(1)作为输入,得到最终的节点表示hv(2)。
GNN的常见变体
图卷积网络(Graph Convolutional Networks,GCN)
GCN是GNN的一种经典变体,它通过在图结构上进行卷积操作来学习节点的表示。GCN的卷积操作可以看作是一种特殊的聚合和更新方式,它考虑了节点的度信息,使得不同度的节点在聚合邻居信息时具有不同的权重。
图注意力网络(Graph Attention Networks,GAT)
GAT引入了注意力机制,能够自适应地为不同的邻居节点分配不同的权重。在聚合邻居节点信息时,GAT会根据邻居节点与当前节点的相关性,动态地调整每个邻居节点的贡献大小,从而更好地捕捉图结构中的重要信息。
图自编码器(Graph Autoencoders,GAE)
GAE将GNN与自编码器的思想相结合,用于图的降维、链接预测等任务。GAE由编码器和解码器两部分组成,编码器使用GNN将图结构数据编码为低维的向量表示,解码器则根据低维向量表示重构原始的图结构。
GNN的应用领域
社交网络分析
- 用户分类:通过分析社交网络中用户之间的好友关系和用户的行为特征,使用GNN对用户进行分类,例如将用户分为不同的兴趣群体。
- 链接预测:预测社交网络中未来可能建立的好友关系,帮助社交平台进行好友推荐。
推荐系统
- 物品推荐:将用户和物品看作图中的节点,用户与物品之间的交互关系(如购买、点击等)看作边,使用GNN学习用户和物品的表示,从而为用户推荐更符合其兴趣的物品。
生物信息学
- 蛋白质相互作用预测:蛋白质可以看作图中的节点,蛋白质之间的相互作用关系看作边,使用GNN预测蛋白质之间是否存在相互作用,有助于药物研发和疾病治疗。
- 基因表达分析:分析基因之间的调控关系,使用GNN挖掘基因表达数据中的潜在模式,为疾病的诊断和治疗提供依据。
交通预测
- 交通流量预测:将交通网络中的路口或路段看作图中的节点,路口或路段之间的连接关系看作边,使用GNN预测不同路口或路段的交通流量,为交通管理和规划提供支持。
图神经网络GNN凭借其独特的处理图结构数据的能力,在多个领域展现出了巨大的潜力和应用价值。随着技术的不断发展和研究的深入,GNN的性能和应用范围还将不断拓展。相信在未来,GNN将为解决更多复杂的实际问题提供有力支持,推动各行业的智能化发展。