计算机视觉(Computer Vision)是人工智能的“眼睛”,它的目标是让计算机能够像人一样“看懂”图像和视频中的内容。你刷视频时的实时美颜、相册里的自动分类、安防摄像头的入侵检测,背后其实都运行着各种计算机视觉算法。
这些算法就像是AI视觉系统中的各种“功能模块”,各司其职,组合起来就能实现从看清楚、认得出,到能理解、能创造的全流程视觉能力。
✅ 常见计算机视觉算法分类及代表技术
📷 图像分类(Image Classification)
目的:判断一张图片属于哪个类别。
代表算法:
-
CNN(卷积神经网络):基础架构,专为图像任务设计。
-
ResNet:解决深层网络训练难题,引入“残差连接”。
-
MobileNet / EfficientNet:轻量模型,适合在移动设备上运行。
应用举例:
-
是否是猫的照片?
-
肺部X光是正常还是异常?
免费分享一套人工智能+大模型入门学习资料给大家,如果想自学,这套资料很全面!
关注公众号【AI技术星球】发暗号【321C】即可获取!
【人工智能自学路线图(图内推荐资源可点击内附链接直达学习)】
【AI入门必读书籍-花书、西瓜书、动手学深度学习等等...】
【机器学习经典算法视频教程+课件源码、机器学习实战项目】
【深度学习与神经网络入门教程】
【计算机视觉+NLP入门教程及经典项目实战源码】
【大模型入门自学资料包】
【学术论文写作攻略工具】
🎯 目标检测(Object Detection)
目的:识别图像中“有哪些物体”以及“它们在哪里”。
代表算法:
-
YOLO(You Only Look Once):速度快,适合实时检测。
-
Faster R-CNN:精度高,适用于对检测要求严的任务。
-
SSD(Single Shot MultiBox Detector):速度与精度折中。
应用举例:
-
交通监控中的车辆识别
-
安防摄像头中的人物检测
📦 目标分割(Image Segmentation)
目的:像“剪影”一样,把图像中的每个像素都标记出来,识别物体的精确边界。
代表算法:
-
U-Net:医学图像分割领域常用。
-
Mask R-CNN:结合检测与分割,适用于多目标精确定位。
-
DeepLab 系列:语义分割经典代表,适用于复杂场景。
应用举例:
-
医学影像中肿瘤轮廓提取
-
自动驾驶中的车道线和行人区域识别
🧠 图像生成与增强(Image Generation & Enhancement)
目的:合成或改善图像质量。
代表算法:
-
GAN(生成对抗网络):可生成高清人脸、风格迁移等。
-
Super-Resolution(超分辨率)算法:如ESRGAN,提高模糊图像清晰度。
-
Denoising Autoencoder:图像去噪。
应用举例:
-
老照片修复
-
人脸动漫化、图像风格转换
🧍♀️ 姿态估计与关键点检测(Pose Estimation & Landmark Detection)
目的:识别人体、手势、面部等的关键点位置。
代表算法:
-
OpenPose:开源人体姿态识别代表作。
-
HRNet:精度高,用于人体关键点识别。
-
MediaPipe:谷歌出品,移动端效率高。
应用举例:
-
健身动作识别
-
虚拟背景识别人像轮廓
-
面部表情跟踪
🎬 视频理解(Video Understanding)
目的:从视频中识别时序行为和动态对象。
代表算法:
-
3D CNN:对视频帧进行时空建模。
-
I3D、SlowFast Networks:动作识别与事件分析的核心算法。
应用举例:
-
安防视频中异常行为检测
-
体感游戏中的动作识别
🧠 小结:不同任务适配不同算法
任务类型 | 推荐算法 | 应用重点 |
---|---|---|
图像分类 | CNN、ResNet、EfficientNet | 识别图片整体类别 |
目标检测 | YOLO、Faster R-CNN、SSD | 检测位置和种类 |
图像分割 | U-Net、Mask R-CNN、DeepLab | 获取精确边界 |
图像生成 | GAN、Super-Resolution | 图像风格转换、清晰度提升 |
姿态估计 | OpenPose、HRNet、MediaPipe | 动作识别、人脸跟踪 |
视频分析 | 3D CNN、SlowFast | 时序建模和事件分析 |
🚀 拓展建议
如果你想深入计算机视觉方向,建议从“图像分类”入门,逐步过渡到“检测”、“分割”和“生成”。常用的工具包括:
-
框架:OpenCV、PyTorch、TensorFlow
-
库:Detectron2、MMDetection、YOLOv5/v8、MediaPipe
-
数据集:ImageNet、COCO、VOC、Cityscapes