分享 | OpenVINO 中两个 demo 的运行

分享 | OpenVINO 中两个 demo 的运行

爱分享的 OpenVINO 中文社区

内容来源| 席柯
内容排版| 李擎
原文链接| https://blog.csdn.net/weixin_48397887/article/details/107633439

正文

OpenVINO 加速图像分类问题

在这里插入图片描述

这是我自己在运行 OpenVINO 的图像分类 demo 时遇到的问题,解决它的方法是进入c盘,在进入 windows进入system32进drivers进etc,打开hosts(这里要下载notepad++,使用它来打开这个文件)。

在这里插入图片描述

下面便是更改里面数据,下图就是更改的数据。

在这里插入图片描述

当运行推理管道验证脚本时,我遇到了缺少dll动态库的问题,

在这里插入图片描述

解决方法,在网上找到相对应的dll动态库,保存下来,放入system32中,即可完成。

在这里插入图片描述

下面是我在OpenVINO下,分别在CPU,intel神经计算棒,集显上运行FPS的对比。

当在CPU运行时:

在这里插入图片描述

当在Intel神经计算棒上运行时

在这里插入图片描述

当在集显上运行时

在这里插入图片描述

从中,可以看出,Intel神经计算棒相对于cpu来说,加速也是很明显的。

关注我们,让开发变得更有趣👇
在这里插入图片描述

微信号:openvinodev
B站:OpenVINO 中文社区

*OpenVINO and the OpenVINO logo are trademarks of Intel Corporation or its subsidiaries.

手把手讲授如何搭建成功OpenVINO框架,并且使用预训练模型快速开发超分辨率、道路分割、汽车识别、人脸识别、人体姿态和行人车辆分析。得益于OpenVINO框架的强大能力,这些例子都能够基于CPU达到实时帧率。 课程的亮点在于在调通Demo的基础上更进一步:一是在讲Demo的时候,对相关领域问题进行分析(比如介绍什么是超分辨率,有什么作用)、预训练模型的来龙去脉(来自那篇论文,用什么训练的)、如何去查看不同模型的输入输出参数、如何编写对应的接口参数进行详细讲解;二是基本上对所有的代码进行重构,也就是能够让例子独立出来,并且给出了带有较详细注释的代码;三是注重实际运用,将Demo进一步和实时视频处理框架融合,形成能够独立运行的程序,方便模型落地部署;四是重难点突出、注重总结归纳,对OpenVINO基本框架,特别是能够提高视频处理速度的异步机制和能够直接部署解决实际问题的骨骼模型着重讲解,帮助学习理解;五是整个课程准备精细,每一课都避免千篇一律,前一课有对后一课的预告,后一课有对前一课的难点回顾,避免学习过程出现突兀;六是在适当的时候拓展衍生,不仅讲OpenVINO解决图像处理问题,而且还补充图像处理的软硬选择、如何在手机上开发图像处理程序等内容,帮助拓展视野,增强对行业现状的了解。 基本提纲: 1、课程综述、环境配置 2、OpenVINO范例-超分辨率(super_resolution_demo) 3、OpenVINO范例-道路分割(segmentation_demo) 4、OpenVINO范例-汽车识别(security_barrier_camera_demo) 5、OpenVINO范例-人脸识别(interactive_face_detection_demo) 6、OpenVINO范例-人体姿态分析(human_pose_estimation_demo) 7、OpenVINO范例-行人车辆分析(pedestrian_tracker_demo) 8、NCS和GOMFCTEMPLATE 9、课程小结,资源分享
代码如下:/* // Copyright (c) 2018 Intel Corporation // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. */ #include <gflags/gflags.h> #include <algorithm> #include <functional> #include <iostream> #include <fstream> #include <random> #include <string> #include <memory> #include <vector> #include <limits> #include <chrono> #include <format_reader_ptr.h> #include <inference_engine.hpp> #include <ext_list.hpp> #include <samples/common.hpp> #include <samples/slog.hpp> #include <samples/args_helper.hpp> #include "object_detection_demo.h" #include "detectionoutput.h" using namespace InferenceEngine; bool ParseAndCheckCommandLine(int argc, char *argv[]) { // ---------------------------Parsing and validation of input args-------------------------------------- slog::info << "Parsing input parameters" << slog::endl; gflags::ParseCommandLineNonHelpFlags(&argc, &argv, true); if (FLAGS_h) { showUsage(); return false; } if (FLAGS_ni < 1) { throw std::logic_error("Parameter -ni should be greater than 0 (default: 1)"); } if (FLAGS_i.empty()) { throw std::logic_error("Parameter -i is not set"); } if (FLAGS_m.empty()) { throw std::logic_error("Parameter -m is not set"); } return true; } /** * \brief The entry point for the Inference Engine object_detection demo application * \file object_detection_demo/main.cpp * \example object_detection_demo/main.cpp */ int main(int argc, char *argv[]) { try { /** This demo covers certain topology and cannot be generalized for any object detection one **/ slog::info << "InferenceEngine: " << GetInferenceEngineVersion() << "\n"; // ------------------------------ Parsing and validation of input args --------------------------------- if (!ParseAndCheckCommandLine(argc, argv)) { return 0; } /** This vector stores paths to the processed images **/ std::vector<std::string> images; parseImagesArguments(images); if (images.empty()) throw std::logic_error("No suitable images were found"); // ----------------------------------------------------------------------------------------------------- // --------------------------- 1. Load Plugin for inference engine ------------------------------------- slog::info << "Loading plugin" << slog::endl; InferencePlugin plugin = PluginDispatcher({ FLAGS_pp, "../../../lib/intel64" , "" }).getPluginByDevice(FLAGS_d); /*If CPU device, load default library with extensions that comes with the product*/ if (FLAGS_d.find("CPU") != std::string::npos) { /** * cpu_extensions library is compiled from "extension" folder containing * custom MKLDNNPlugin layer implementations. These layers are not supported * by mkldnn, but they can be useful for inferencing custom topologies. **/ plugin.AddExtension(std::make_shared<Extensions::Cpu::CpuExtensions>()); } if (!FLAGS_l.empty()) { // CPU(MKLDNN) extensions are loaded as a shared library and passed as a pointer to base extension IExtensionPtr extension_ptr = make_so_pointer<IExtension>(FLAGS_l); plugin.AddExtension(extension_ptr); slog::info << "CPU Extension loaded: " << FLAGS_l << slog::endl; } if (!FLAGS_c.empty()) { // clDNN Extensions are loaded from an .xml description and OpenCL kernel files plugin.SetConfig({ { PluginConfigParams::KEY_CONFIG_FILE, FLAGS_c } }); slog::info << "GPU Extension loaded: " << FLAGS_c << slog::endl; } /** Setting plugin parameter for per layer metrics **/ if (FLAGS_pc) { plugin.SetConfig({ { PluginConfigParams::KEY_PERF_COUNT, PluginConfigParams::YES } }); } /** Printing plugin version **/ printPluginVersion(plugin, std::cout); // ----------------------------------------------------------------------------------------------------- // --------------------------- 2. Read IR Generated by ModelOptimizer (.xml and .bin files) ------------ std::string binFileName = fileNameNoExt(FLAGS_m) + ".bin"; slog::info << "Loading network files:" "\n\t" << FLAGS_m << "\n\t" << binFileName << slog::endl; CNNNetReader networkReader; /** Read network model **/ networkReader.ReadNetwork(FLAGS_m); /** Extract model name and load weigts **/ networkReader.ReadWeights(binFileName); CNNNetwork network = networkReader.getNetwork(); Precision p = network.getPrecision(); // ----------------------------------------------------------------------------------------------------- // --------------------------- 3. Configure input & output --------------------------------------------- // ------------------------------ Adding DetectionOutput ----------------------------------------------- /** * The only meaningful difference between Faster-RCNN and SSD-like topologies is the interpretation * of the output data. Faster-RCNN has 2 output layers which (the same format) are presented inside SSD. * * But SSD has an additional post-processing DetectionOutput layer that simplifies output filtering. * So here we are adding 3 Reshapes and the DetectionOutput to the end of Faster-RCNN so it will return the * same result as SSD and we can easily parse it. */ std::string firstLayerName = network.getInputsInfo().begin()->first; int inputWidth = network.getInputsInfo().begin()->second->getTensorDesc().getDims()[3]; int inputHeight = network.getInputsInfo().begin()->second->getTensorDesc().getDims()[2]; DataPtr bbox_pred_reshapeInPort = ((ICNNNetwork&)network).getData(FLAGS_bbox_name.c_str()); if (bbox_pred_reshapeInPort == nullptr) { throw std::logic_error(std::string("Can't find output layer named ") + FLAGS_bbox_name); } SizeVector bbox_pred_reshapeOutDims = { bbox_pred_reshapeInPort->getTensorDesc().getDims()[0] * bbox_pred_reshapeInPort->getTensorDesc().getDims()[1], 1 }; DataPtr rois_reshapeInPort = ((ICNNNetwork&)network).getData(FLAGS_proposal_name.c_str()); if (rois_reshapeInPort == nullptr) { throw std::logic_error(std::string("Can't find output layer named ") + FLAGS_proposal_name); } SizeVector rois_reshapeOutDims = { rois_reshapeInPort->getTensorDesc().getDims()[0] * rois_reshapeInPort->getTensorDesc().getDims()[1], 1 }; DataPtr cls_prob_reshapeInPort = ((ICNNNetwork&)network).getData(FLAGS_prob_name.c_str()); if (cls_prob_reshapeInPort == nullptr) { throw std::logic_error(std::string("Can't find output layer named ") + FLAGS_prob_name); } SizeVector cls_prob_reshapeOutDims = { cls_prob_reshapeInPort->getTensorDesc().getDims()[0] * cls_prob_reshapeInPort->getTensorDesc().getDims()[1], 1 }; /* Detection output */ int normalized = 0; int prior_size = normalized ? 4 : 5; int num_priors = rois_reshapeOutDims[0] / prior_size; // num_classes guessed from the output dims if (bbox_pred_reshapeOutDims[0] % (num_priors * 4) != 0) { throw std::logic_error("Can't guess number of classes. Something's wrong with output layers dims"); } int num_classes = bbox_pred_reshapeOutDims[0] / (num_priors * 4); slog::info << "num_classes guessed: " << num_classes << slog::endl; LayerParams detectionOutParams; detectionOutParams.name = "detection_out"; detectionOutParams.type = "DetectionOutput"; detectionOutParams.precision = p; CNNLayerPtr detectionOutLayer = CNNLayerPtr(new CNNLayer(detectionOutParams)); detectionOutLayer->params["background_label_id"] = "0"; detectionOutLayer->params["code_type"] = "caffe.PriorBoxParameter.CENTER_SIZE"; detectionOutLayer->params["eta"] = "1.0"; detectionOutLayer->params["input_height"] = std::to_string(inputHeight); detectionOutLayer->params["input_width"] = std::to_string(inputWidth); detectionOutLayer->params["keep_top_k"] = "200"; detectionOutLayer->params["nms_threshold"] = "0.3"; detectionOutLayer->params["normalized"] = std::to_string(normalized); detectionOutLayer->params["num_classes"] = std::to_string(num_classes); detectionOutLayer->params["share_location"] = "0"; detectionOutLayer->params["top_k"] = "400"; detectionOutLayer->params["variance_encoded_in_target"] = "1"; detectionOutLayer->params["visualize"] = "False"; detectionOutLayer->insData.push_back(bbox_pred_reshapeInPort); detectionOutLayer->insData.push_back(cls_prob_reshapeInPort); detectionOutLayer->insData.push_back(rois_reshapeInPort); SizeVector detectionOutLayerOutDims = { 7, 200, 1, 1 }; DataPtr detectionOutLayerOutPort = DataPtr(new Data("detection_out", detectionOutLayerOutDims, p, TensorDesc::getLayoutByDims(detectionOutLayerOutDims))); detectionOutLayerOutPort->creatorLayer = detectionOutLayer; detectionOutLayer->outData.push_back(detectionOutLayerOutPort); DetectionOutputPostProcessor detOutPostProcessor(detectionOutLayer.get()); network.addOutput(FLAGS_bbox_name, 0); network.addOutput(FLAGS_prob_name, 0); network.addOutput(FLAGS_proposal_name, 0); // --------------------------- Prepare input blobs ----------------------------------------------------- slog::info << "Preparing input blobs" << slog::endl; /** Taking information about all topology inputs **/ InputsDataMap inputsInfo(network.getInputsInfo()); /** SSD network has one input and one output **/ if (inputsInfo.size() != 1 && inputsInfo.size() != 2) throw std::logic_error("Demo supports topologies only with 1 or 2 inputs"); std::string imageInputName, imInfoInputName; InputInfo::Ptr inputInfo = inputsInfo.begin()->second; SizeVector inputImageDims; /** Stores input image **/ /** Iterating over all input blobs **/ for (auto & item : inputsInfo) { /** Working with first input tensor that stores image **/ if (item.second->getInputData()->getTensorDesc().getDims().size() == 4) { imageInputName = item.first; slog::info << "Batch size is " << std::to_string(networkReader.getNetwork().getBatchSize()) << slog::endl; /** Creating first input blob **/ Precision inputPrecision = Precision::U8; item.second->setPrecision(inputPrecision); } else if (item.second->getInputData()->getTensorDesc().getDims().size() == 2) { imInfoInputName = item.first; Precision inputPrecision = Precision::FP32; item.second->setPrecision(inputPrecision); if ((item.second->getTensorDesc().getDims()[1] != 3 && item.second->getTensorDesc().getDims()[1] != 6) || item.second->getTensorDesc().getDims()[0] != 1) { throw std::logic_error("Invalid input info. Should be 3 or 6 values length"); } } } // ------------------------------ Prepare output blobs ------------------------------------------------- slog::info << "Preparing output blobs" << slog::endl; OutputsDataMap outputsInfo(network.getOutputsInfo()); const int maxProposalCount = detectionOutLayerOutDims[1]; const int objectSize = detectionOutLayerOutDims[0]; /** Set the precision of output data provided by the user, should be called before load of the network to the plugin **/ outputsInfo[FLAGS_bbox_name]->setPrecision(Precision::FP32); outputsInfo[FLAGS_prob_name]->setPrecision(Precision::FP32); outputsInfo[FLAGS_proposal_name]->setPrecision(Precision::FP32); // ----------------------------------------------------------------------------------------------------- // --------------------------- 4. Loading model to the plugin ------------------------------------------ slog::info << "Loading model to the plugin" << slog::endl; ExecutableNetwork executable_network = plugin.LoadNetwork(network, {}); // ----------------------------------------------------------------------------------------------------- // --------------------------- 5. Create infer request ------------------------------------------------- InferRequest infer_request = executable_network.CreateInferRequest(); // ----------------------------------------------------------------------------------------------------- // --------------------------- 6. Prepare input -------------------------------------------------------- /** Collect images data ptrs **/ std::vector<std::shared_ptr<unsigned char>> imagesData, originalImagesData; std::vector<int> imageWidths, imageHeights; for (auto & i : images) { FormatReader::ReaderPtr reader(i.c_str()); if (reader.get() == nullptr) { slog::warn << "Image " + i + " cannot be read!" << slog::endl; continue; } /** Store image data **/ std::shared_ptr<unsigned char> originalData(reader->getData()); std::shared_ptr<unsigned char> data(reader->getData(inputInfo->getTensorDesc().getDims()[3], inputInfo->getTensorDesc().getDims()[2])); if (data.get() != nullptr) { originalImagesData.push_back(originalData); imagesData.push_back(data); imageWidths.push_back(reader->width()); imageHeights.push_back(reader->height()); } } if (imagesData.empty()) throw std::logic_error("Valid input images were not found!"); size_t batchSize = network.getBatchSize(); slog::info << "Batch size is " << std::to_string(batchSize) << slog::endl; if (batchSize != imagesData.size()) { slog::warn << "Number of images " + std::to_string(imagesData.size()) + \ " doesn't match batch size " + std::to_string(batchSize) << slog::endl; slog::warn << std::to_string(std::min(imagesData.size(), batchSize)) + \ " images will be processed" << slog::endl; batchSize = std::min(batchSize, imagesData.size()); } /** Creating input blob **/ Blob::Ptr imageInput = infer_request.GetBlob(imageInputName); /** Filling input tensor with images. First b channel, then g and r channels **/ size_t num_channels = imageInput->getTensorDesc().getDims()[1]; size_t image_size = imageInput->getTensorDesc().getDims()[3] * imageInput->getTensorDesc().getDims()[2]; unsigned char* data = static_cast<unsigned char*>(imageInput->buffer()); /** Iterate over all input images **/ for (size_t image_id = 0; image_id < std::min(imagesData.size(), batchSize); ++image_id) { /** Iterate over all pixel in image (b,g,r) **/ for (size_t pid = 0; pid < image_size; pid++) { /** Iterate over all channels **/ for (size_t ch = 0; ch < num_channels; ++ch) { /** [images stride + channels stride + pixel id ] all in bytes **/ data[image_id * image_size * num_channels + ch * image_size + pid] = imagesData.at(image_id).get()[pid*num_channels + ch]; } } } if (imInfoInputName != "") { Blob::Ptr input2 = infer_request.GetBlob(imInfoInputName); auto imInfoDim = inputsInfo.find(imInfoInputName)->second->getTensorDesc().getDims()[1]; /** Fill input tensor with values **/ float *p = input2->buffer().as<PrecisionTrait<Precision::FP32>::value_type*>(); for (size_t image_id = 0; image_id < std::min(imagesData.size(), batchSize); ++image_id) { p[image_id * imInfoDim + 0] = static_cast<float>(inputsInfo[imageInputName]->getTensorDesc().getDims()[2]); p[image_id * imInfoDim + 1] = static_cast<float>(inputsInfo[imageInputName]->getTensorDesc().getDims()[3]); for (int k = 2; k < imInfoDim; k++) { p[image_id * imInfoDim + k] = 1.0f; // all scale factors are set to 1.0 } } } // ----------------------------------------------------------------------------------------------------- // ---------------------------- 7. Do inference -------------------------------------------------------- slog::info << "Start inference (" << FLAGS_ni << " iterations)" << slog::endl; typedef std::chrono::high_resolution_clock Time; typedef std::chrono::duration<double, std::ratio<1, 1000>> ms; typedef std::chrono::duration<float> fsec; double total = 0.0; /** Start inference & calc performance **/ for (int iter = 0; iter < FLAGS_ni; ++iter) { auto t0 = Time::now(); infer_request.Infer(); auto t1 = Time::now(); fsec fs = t1 - t0; ms d = std::chrono::duration_cast<ms>(fs); total += d.count(); } // ----------------------------------------------------------------------------------------------------- // ---------------------------- 8. Process output ------------------------------------------------------ slog::info << "Processing output blobs" << slog::endl; Blob::Ptr bbox_output_blob = infer_request.GetBlob(FLAGS_bbox_name); Blob::Ptr prob_output_blob = infer_request.GetBlob(FLAGS_prob_name); Blob::Ptr rois_output_blob = infer_request.GetBlob(FLAGS_proposal_name); std::vector<Blob::Ptr> detOutInBlobs = { bbox_output_blob, prob_output_blob, rois_output_blob }; Blob::Ptr output_blob = std::make_shared<TBlob<float>>(Precision::FP32, Layout::NCHW, detectionOutLayerOutDims); output_blob->allocate(); std::vector<Blob::Ptr> detOutOutBlobs = { output_blob }; detOutPostProcessor.execute(detOutInBlobs, detOutOutBlobs, nullptr); const float* detection = static_cast<PrecisionTrait<Precision::FP32>::value_type*>(output_blob->buffer()); std::vector<std::vector<int> > boxes(batchSize); std::vector<std::vector<int> > classes(batchSize); /* Each detection has image_id that denotes processed image */ for (int curProposal = 0; curProposal < maxProposalCount; curProposal++) { float image_id = detection[curProposal * objectSize + 0]; float label = detection[curProposal * objectSize + 1]; float confidence = detection[curProposal * objectSize + 2]; float xmin = detection[curProposal * objectSize + 3] * imageWidths[image_id]; float ymin = detection[curProposal * objectSize + 4] * imageHeights[image_id]; float xmax = detection[curProposal * objectSize + 5] * imageWidths[image_id]; float ymax = detection[curProposal * objectSize + 6] * imageHeights[image_id]; /* MKLDnn and clDNN have little differente in DetectionOutput layer, so we need this check */ if (image_id < 0 || confidence == 0) { continue; } std::cout << "[" << curProposal << "," << label << "] element, prob = " << confidence << " (" << xmin << "," << ymin << ")-(" << xmax << "," << ymax << ")" << " batch id : " << image_id; if (confidence > 0.5) { /** Drawing only objects with >50% probability **/ classes[image_id].push_back(static_cast<int>(label)); boxes[image_id].push_back(static_cast<int>(xmin)); boxes[image_id].push_back(static_cast<int>(ymin)); boxes[image_id].push_back(static_cast<int>(xmax - xmin)); boxes[image_id].push_back(static_cast<int>(ymax - ymin)); std::cout << " WILL BE PRINTED!"; } std::cout << std::endl; } for (size_t batch_id = 0; batch_id < batchSize; ++batch_id) { addRectangles(originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id], boxes[batch_id], classes[batch_id]); const std::string image_path = "out_" + std::to_string(batch_id) + ".bmp"; if (writeOutputBmp(image_path, originalImagesData[batch_id].get(), imageHeights[batch_id], imageWidths[batch_id])) { slog::info << "Image " + image_path + " created!" << slog::endl; } else { throw std::logic_error(std::string("Can't create a file: ") + image_path); } } // ----------------------------------------------------------------------------------------------------- std::cout << std::endl << "total inference time: " << total << std::endl; std::cout << "Average running time of one iteration: " << total / static_cast<double>(FLAGS_ni) << " ms" << std::endl; std::cout << std::endl << "Throughput: " << 1000 * static_cast<double>(FLAGS_ni) * batchSize / total << " FPS" << std::endl; std::cout << std::endl; /** Show performace results **/ if (FLAGS_pc) { printPerformanceCounts(infer_request, std::cout); } } catch (const std::exception& error) { slog::err << error.what() << slog::endl; return 1; } catch (...) { slog::err << "Unknown/internal exception happened." << slog::endl; return 1; } slog::info << "Execution successful" << slog::endl; return 0; } 有如下报错:严重性 代码 说明 项目 文件 行 禁止显示状态 错误 LNK2019 无法解析的外部符号 CreateFormatReader,该符号在函数 "public: __cdecl FormatReader::ReaderPtr::ReaderPtr(char const *)" (??0ReaderPtr@FormatReader@@QEAA@PEBD@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误(活动) 无法引用 函数 "InferenceEngine::make_so_pointer<T>(const std::string &name) [其 T=InferenceEngine::IExtension]" (已声明 所在行数:164,所属文件:"c:\Users\颜俊毅\Desktop\dldt-2018\inference-engine\include\details\ie_so_pointer.hpp") -- 它是已删除的函数 88999 c:\Users\颜俊毅\Documents\Visual Studio 2015\Projects\88999\88999\7521.cpp 102 错误 LNK2019 无法解析的外部符号 __imp_CreateDefaultAllocator,该符号在函数 "protected: virtual class std::shared_ptr<class InferenceEngine::IAllocator> const & __cdecl InferenceEngine::TBlob<int,struct std::enable_if<1,void> >::getAllocator(void)const " (?getAllocator@?$TBlob@HU?$enable_if@$00X@std@@@InferenceEngine@@MEBAAEBV?$shared_ptr@VIAllocator@InferenceEngine@@@std@@XZ) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::BlockingDesc::BlockingDesc(class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > const &,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > const &)" (__imp_??0BlockingDesc@InferenceEngine@@QEAA@AEBV?$vector@_KV?$allocator@_K@std@@@std@@0@Z),该符号在函数 "public: __cdecl DetectionOutputPostProcessor::DetectionOutputPostProcessor(class InferenceEngine::CNNLayer const *)" (??0DetectionOutputPostProcessor@@QEAA@PEBVCNNLayer@InferenceEngine@@@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: virtual __cdecl InferenceEngine::BlockingDesc::~BlockingDesc(void)" (__imp_??1BlockingDesc@InferenceEngine@@UEAA@XZ),该符号在函数 "public: __cdecl DetectionOutputPostProcessor::DetectionOutputPostProcessor(class InferenceEngine::CNNLayer const *)" (??0DetectionOutputPostProcessor@@QEAA@PEBVCNNLayer@InferenceEngine@@@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::TensorDesc::TensorDesc(class InferenceEngine::Precision const &,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> >,class InferenceEngine::BlockingDesc const &)" (__imp_??0TensorDesc@InferenceEngine@@QEAA@AEBVPrecision@1@V?$vector@_KV?$allocator@_K@std@@@std@@AEBVBlockingDesc@1@@Z),该符号在函数 "public: __cdecl DetectionOutputPostProcessor::DetectionOutputPostProcessor(class InferenceEngine::CNNLayer const *)" (??0DetectionOutputPostProcessor@@QEAA@PEBVCNNLayer@InferenceEngine@@@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::TensorDesc::TensorDesc(class InferenceEngine::Precision const &,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> >,enum InferenceEngine::Layout)" (__imp_??0TensorDesc@InferenceEngine@@QEAA@AEBVPrecision@1@V?$vector@_KV?$allocator@_K@std@@@std@@W4Layout@1@@Z),该符号在函数 "public: __cdecl InferenceEngine::Blob::Blob(class InferenceEngine::Precision,enum InferenceEngine::Layout,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > const &)" (??0Blob@InferenceEngine@@QEAA@VPrecision@1@W4Layout@1@AEBV?$vector@_KV?$allocator@_K@std@@@std@@@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: virtual __cdecl InferenceEngine::TensorDesc::~TensorDesc(void)" (__imp_??1TensorDesc@InferenceEngine@@UEAA@XZ),该符号在函数 "public: __cdecl InferenceEngine::Blob::Blob(class InferenceEngine::TensorDesc)" (??0Blob@InferenceEngine@@QEAA@VTensorDesc@1@@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > & __cdecl InferenceEngine::TensorDesc::getDims(void)" (__imp_?getDims@TensorDesc@InferenceEngine@@QEAAAEAV?$vector@_KV?$allocator@_K@std@@@std@@XZ),该符号在函数 "public: virtual void __cdecl InferenceEngine::TBlob<int,struct std::enable_if<1,void> >::allocate(void)" (?allocate@?$TBlob@HU?$enable_if@$00X@std@@@InferenceEngine@@UEAAXXZ) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > const & __cdecl InferenceEngine::TensorDesc::getDims(void)const " (__imp_?getDims@TensorDesc@InferenceEngine@@QEBAAEBV?$vector@_KV?$allocator@_K@std@@@std@@XZ),该符号在函数 "public: unsigned __int64 __cdecl InferenceEngine::Blob::byteSize(void)const " (?byteSize@Blob@InferenceEngine@@QEBA_KXZ) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: static enum InferenceEngine::Layout __cdecl InferenceEngine::TensorDesc::getLayoutByDims(class std::vector<unsigned __int64,class std::allocator<unsigned __int64> >)" (__imp_?getLayoutByDims@TensorDesc@InferenceEngine@@SA?AW4Layout@2@V?$vector@_KV?$allocator@_K@std@@@std@@@Z),该符号在函数 main 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::TensorDesc::TensorDesc(class InferenceEngine::TensorDesc const &)" (__imp_??0TensorDesc@InferenceEngine@@QEAA@AEBV01@@Z),该符号在函数 "public: __cdecl InferenceEngine::TBlob<int,struct std::enable_if<1,void> >::TBlob<int,struct std::enable_if<1,void> >(class InferenceEngine::TensorDesc const &)" (??0?$TBlob@HU?$enable_if@$00X@std@@@InferenceEngine@@QEAA@AEBVTensorDesc@1@@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::Data::Data(class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > const &,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > const &,class InferenceEngine::Precision,enum InferenceEngine::Layout)" (__imp_??0Data@InferenceEngine@@QEAA@AEBV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@AEBV?$vector@_KV?$allocator@_K@std@@@3@VPrecision@1@W4Layout@1@@Z),该符号在函数 main 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: class InferenceEngine::TensorDesc const & __cdecl InferenceEngine::Data::getTensorDesc(void)const " (__imp_?getTensorDesc@Data@InferenceEngine@@QEBAAEBVTensorDesc@2@XZ),该符号在函数 "public: virtual class std::map<class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> >,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> >,struct std::less<class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > >,class std::allocator<struct std::pair<class std::basic_string<char,struct std::char_traits<char>,class std::allocator<char> > const ,class std::vector<unsigned __int64,class std::allocator<unsigned __int64> > > > > __cdecl InferenceEngine::CNNNetwork::getInputShapes(void)" (?getInputShapes@CNNNetwork@InferenceEngine@@UEAA?AV?$map@V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@V?$vector@_KV?$allocator@_K@std@@@2@U?$less@V?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@@2@V?$allocator@U?$pair@$$CBV?$basic_string@DU?$char_traits@D@std@@V?$allocator@D@2@@std@@V?$vector@_KV?$allocator@_K@std@@@2@@std@@@2@@std@@XZ) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: void __cdecl InferenceEngine::Data::setPrecision(class InferenceEngine::Precision const &)" (__imp_?setPrecision@Data@InferenceEngine@@QEAAXAEBVPrecision@2@@Z),该符号在函数 "public: void __cdecl InferenceEngine::InputInfo::setPrecision(class InferenceEngine::Precision)" (?setPrecision@InputInfo@InferenceEngine@@QEAAXVPrecision@2@@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::Data::~Data(void)" (__imp_??1Data@InferenceEngine@@QEAA@XZ),该符号在函数 "public: void * __cdecl InferenceEngine::Data::`scalar deleting destructor'(unsigned int)" (??_GData@InferenceEngine@@QEAAPEAXI@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 __imp_findPlugin,该符号在函数 "public: class InferenceEngine::details::SOPointer<class InferenceEngine::IInferencePlugin,class InferenceEngine::details::SharedObjectLoader> __cdecl InferenceEngine::PluginDispatcher::getSuitablePlugin(enum InferenceEngine::TargetDevice)const " (?getSuitablePlugin@PluginDispatcher@InferenceEngine@@QEBA?AV?$SOPointer@VIInferencePlugin@InferenceEngine@@VSharedObjectLoader@details@2@@details@2@W4TargetDevice@2@@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 __imp_GetInferenceEngineVersion,该符号在函数 main 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 __imp_CreateCNNNetReader,该符号在函数 "public: __cdecl InferenceEngine::CNNNetReader::CNNNetReader(void)" (??0CNNNetReader@InferenceEngine@@QEAA@XZ) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::CpuExtensions(void)" (__imp_??0CpuExtensions@Cpu@Extensions@InferenceEngine@@QEAA@XZ),该符号在函数 "public: __cdecl std::_Ref_count_obj<class InferenceEngine::Extensions::Cpu::CpuExtensions>::_Ref_count_obj<class InferenceEngine::Extensions::Cpu::CpuExtensions><>(void)" (??$?0$$V@?$_Ref_count_obj@VCpuExtensions@Cpu@Extensions@InferenceEngine@@@std@@QEAA@XZ) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2019 无法解析的外部符号 "__declspec(dllimport) public: virtual __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::~CpuExtensions(void)" (__imp_??1CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA@XZ),该符号在函数 "public: virtual void * __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::`scalar deleting destructor'(unsigned int)" (??_GCpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAPEAXI@Z) 被引用 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::GetVersion(struct InferenceEngine::Version const * &)const " (?GetVersion@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEBAXAEAPEBUVersion@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::Release(void)" (?Release@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAXXZ) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::SetLogCallback(class InferenceEngine::IErrorListener &)" (?SetLogCallback@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAXAEAVIErrorListener@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual void __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::Unload(void)" (?Unload@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAAXXZ) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual enum InferenceEngine::StatusCode __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::getFactoryFor(class InferenceEngine::ILayerImplFactory * &,class InferenceEngine::CNNLayer const *,struct InferenceEngine::ResponseDesc *)" (?getFactoryFor@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA?AW4StatusCode@4@AEAPEAVILayerImplFactory@4@PEBVCNNLayer@4@PEAUResponseDesc@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual enum InferenceEngine::StatusCode __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::getPrimitiveTypes(char * * &,unsigned int &,struct InferenceEngine::ResponseDesc *)" (?getPrimitiveTypes@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA?AW4StatusCode@4@AEAPEAPEADAEAIPEAUResponseDesc@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK2001 无法解析的外部符号 "public: virtual enum InferenceEngine::StatusCode __cdecl InferenceEngine::Extensions::Cpu::CpuExtensions::getShapeInferImpl(class std::shared_ptr<class InferenceEngine::IShapeInferImpl> &,char const *,struct InferenceEngine::ResponseDesc *)" (?getShapeInferImpl@CpuExtensions@Cpu@Extensions@InferenceEngine@@UEAA?AW4StatusCode@4@AEAV?$shared_ptr@VIShapeInferImpl@InferenceEngine@@@std@@PEBDPEAUResponseDesc@4@@Z) 88999 c:\Users\颜俊毅\documents\visual studio 2015\Projects\88999\88999\7521.obj 1 错误 LNK1120 27 个无法解析的外部命令 88999 c:\users\颜俊毅\documents\visual studio 2015\Projects\88999\x64\Debug\88999.exe 1
©️2020 CSDN 皮肤主题: 深蓝海洋 设计师:CSDN官方博客 返回首页