4.3.1有监督学习(四) - BP神经网络(BP Neuron Networks)

简介

BP神经网络(Backpropagation Neuron Networks)又被称作多层感应机(Multi-layer Perceptrons)。BP神经网络通过设定隐藏层,能够在原有逻辑回归的基础上实现非线性的分割。神经网络在构建过程中,通过定义输入层、隐藏层与输出层,明确激活函数、损失函数,通过梯度递减法训练样本,最终实现分类器。

一句话解释版本:

神经网络由输入层、隐藏层、输出层构成,通过损失函数与梯度下降法拟合参数并建立模型。

 

数据分析与挖掘体系位置

BP神经网络是有监督学习中的一种模型。所以在数据分析与数据挖掘中的位置如下图所示。

 

神经网络相关名词

神经网络中涉及的名词众多,所以我自己整理了一张表格,能够整理清楚这么多的专业词汇到底是为了做什么的。

名称

 

BP神经网络

使用向后传播法进行参数估计得到的神经网络。

输入层,隐藏层,输出层

神经网络的组成部分

节点、神经元

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值