可视化比较数据集中残差和特定样本邻居的残差的分布

44 篇文章 6 订阅 ¥59.90 ¥99.00
本文介绍了如何使用R语言分析并可视化数据集的残差和特定样本邻居的残差分布,以评估模型性能和识别异常点。通过比较两者的密度图,可以洞察模型的拟合程度和数据特性,对于模型诊断和异常检测具有指导意义。
摘要由CSDN通过智能技术生成

在机器学习和统计建模中,残差是指模型预测值与真实观测值之间的差异。通过分析残差,我们可以评估模型的准确性和对数据的拟合程度。在本文中,我们将介绍如何使用R语言对数据集中的残差和特定样本邻居的残差进行可视化比较。

首先,我们需要准备一个数据集和一个训练好的模型。这里我们以一个回归模型为例,假设我们已经使用线性回归模型对数据进行了训练。

# 导入必要的库
library(ggplot2)
library(dplyr)

# 假设我们有一个数据集data和一个已经训练好的线性回归模型model

# 首先,我们需要计算整个数据集的残差
data$residuals <- residuals(model)

# 接下来,选择一个特定的样本,计算其残差,并获取其邻居样本的残差
sample_index <- 100  # 选择第100个样本
sample_residual <- data$residuals[sample_index]

# 计算邻居样本的索引(例如,选择前后5个样本作为邻居)
neighbor_indices <- (sample_index - 5):(sample_index + 5)
neighbor_residuals <- data$residuals[neighbor_indices]

# 将残差和邻居残差的数据转换为数据框
residual_df <- data.frame(
  Type = rep(c("Dataset&
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值