Description
沫沫最近在玩一个二维的射箭游戏,如下图 1 所示,这个游戏中的 x 轴在地面,第一象限中有一些竖直线段作为靶子,任意两个靶子都没有公共部分,也不会接触坐标轴。沫沫控制一个位于(0,0)的弓箭手,可以朝 0 至 90?中的任意角度(不包括 0度和 90度),以任意大小的力量射出带有穿透能力的光之箭。由于游戏中没有空气阻力,并且光之箭没有箭身,箭的轨迹会是一条标准的抛物线,被轨迹穿过的所有靶子都认为被沫沫射中了,包括那些 只有端点被射中的靶子。这个游戏有多种模式,其中沫沫最喜欢的是闯关模式。在闯关模式中,第一关只有一个靶 子,射中这个靶子即可进入第二关,这时在第一关的基础上会出现另外一个靶子,若能够一箭 双雕射中这两个靶子便可进入第三关,这时会出现第三个靶子。依此类推,每过一关都会新出 现一个靶子,在第 K 关必须一箭射中前 K 关出现的所有 K 个靶子才能进入第 K+1 关,否则游戏 结束。沫沫花了很多时间在这个游戏上,却最多只能玩到第七关“七星连珠”,这让她非常困惑。 于是她设法获得了每一关出现的靶子的位置,想让你告诉她,最多能通过多少关
【题目分析】
听qy神犇讲题,总是讲一些奇奇怪怪,逼格又很高的奇葩题目。这道题刚刚看到的时候就是一脸蒙蔽,感觉像是一个二分+解二次函数的不等式的题目。x1<=ax^2+bx<=x2。结果巧妙地转化成了半平面交的问题。简直666地飞起。
原来的不等式可以转化成ax^2+bx-x1>=0 和 ax^2+bx-x2<=0。在二分的时候x可以看成是一个常数。然后把ab看成未知数。就是一个关于ab的不等式,就是一个半平面交的问题。可以二分一下答案,看看k值是否满足(即围成的图形还是存在的)。
就当作抄下来的一个模板好了。(NOIP不考,将来再说吧)
另:坑爹的出题人long double +1e-18的eps(精度调大会出错,不用long double也是WA),真可怕。出题人。。。。。
【代码】
#include <cstdio>
#include <cstring>
#include <cmath>
#include <cstdlib>
#include <algorithm>
#define maxn 200005
#define eps 1e-18
#define inf 1000000005
#define double long double
using namespace std;
inline int read()
{
int x=0,f=1; char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while (ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
int n,m,head,tail;
struct P{double x,y;};
struct L{P a,b;double angle;int id;}l[maxn],a[maxn],q[maxn];
inline P operator -(P a,P b){return (P){a.x-b.x,a.y-b.y};}
inline double operator *(P a,P b){return a.x*b.y-a.y*b.x;}
inline bool operator <(L l1,L l2)
{
if (fabs(l1.angle-l2.angle)>eps) return l1.angle<l2.angle;
else return (l1.a-l2.a)*(l1.b-l2.a)>0;
}
inline P inter (L l1,L l2)
{
double k1=(l2.b-l1.a)*(l1.b-l1.a);
double k2=(l1.b-l1.a)*(l2.a-l1.a);
double t=k1/(k1+k2);
return(P){l2.b.x+(l2.a.x-l2.b.x)*t,l2.b.y+(l2.a.y-l2.b.y)*t};
}
inline bool judge(L l1,L l2,L t)
{P p=inter(l1,l2);return (p-t.a)*(t.b-t.a)>0;}
inline double calc(double a,double b,double x){return b/a-a*x;}
inline bool hpi(int mid)
{
head=1,tail=0;int cnt=0;
for (int i=1;i<=m;++i) if (l[i].id<=mid)
{
if (!cnt||l[i].angle!=a[cnt].angle) cnt++;
a[cnt]=l[i];
}
q[++tail]=a[1];q[++tail]=a[2];
for (int i=3;i<=cnt;++i)
{
while (head<tail&&judge(q[tail],q[tail-1],a[i])) tail--;
while (head<tail&&judge(q[head],q[head+1],a[i])) head++;
q[++tail]=a[i];
}
while (head<tail&&judge(q[tail],q[tail-1],q[head])) tail--;
}
int main()
{
n=read();
l[++m].a=(P){-inf,-inf};l[m].b=(P){inf,-inf};l[m].id=0;
l[++m].a=(P){inf,-inf};l[m].b=(P){inf,inf};l[m].id=0;
l[++m].a=(P){inf,inf};l[m].b=(P){-inf,inf};l[m].id=0;
l[++m].a=(P){-inf,inf};l[m].b=(P){-inf,-inf};l[m].id=0;
for (int i=1;i<=n;++i)
{
double x=read(),y1=read(),y2=read();
l[++m].a=(P){-1,calc(x,y1,-1)};l[m].b=(P){1,calc(x,y1,1)};l[m].id=i;
l[++m].a=(P){1,calc(x,y2,1)};l[m].b=(P){-1,calc(x,y2,-1)};l[m].id=i;
}
for (int i=1;i<=m;++i) l[i].angle=atan2(l[i].b.y-l[i].a.y,l[i].b.x-l[i].a.x);
sort(l+1,l+m+1);
int l=1,r=n,mid,ans=0;
while (l<=r)
{
mid=(l+r)>>1;
hpi(mid);
if (tail-head>=2) ans=mid,l=mid+1;
else r=mid-1;
}
printf("%d\n",ans);
return 0;
}