POJ 1860 Currency Exchange Bellman

题目大意:有多种货币,他们之间可以相互兑换,a,b,两种货币之间,c为手续费,r为汇率,本金为s,a-b的权值就是(V-Cab)*Rab 问能否通过交换最终得到多余s的货币。

分析:货币之间的交换可以通过不同的货币分别进行交换,我们要找出是否存在正权回路,也就是说 我们需要找一条回路使顶点上的权值能够不断地增加(一直能进行松弛)

本题是求最大路径,不过我们只需要判断有无无限松弛的环即可,这和Bellman的思路一致。

代码如下:

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
int n,s,m,cnt=1;
double v,d[110];
struct lxt//本人姓名缩写而已。。不用深究 
{
	int a,b;
	double r,c; 
}exc[202];
bool Bellman()
{
	memset(d,0,sizeof(d));
	d[s]=v;
	bool flag=false;
	for(int i=2;i<=n;i++)
	{
		flag=false;
		for(int j=1;j<=cnt;j++)
		if(d[exc[j].b]<(d[exc[j].a]-exc[j].c) *exc[j].r)
		{
			d[exc[j].b]=((d[exc[j].a]-exc[j].c)*exc[j].r);
			flag=true;
		}
		if(!flag )
			break;//不能继续松弛 
	}
	for(int k=1;k<=cnt;k++)
	{
		if(d[exc[k].b] < ((d[exc[k].a] - exc[k].c) * exc[k].r))
			return true;	
	}	
	return false;
}
int main()
{
	int a,b;
	double x,y,z,k;
	while(cin>>n>>m>>s>>v)
	{
		cnt=1;
		memset(exc,0,sizeof(exc));
		double x,y,z,k;
		for(int i=1;i<=m;i++)
		{
			cin>>a>>b>>x>>y>>z>>k;
			exc[cnt].a=a;
			exc[cnt].b=b;
			exc[cnt].r=x;
			exc[cnt++].c=y;
			exc[cnt].a=b;
			exc[cnt].b=a;
			exc[cnt].r=z;
			exc[cnt++].c=k;	
		}	
		if(Bellman())
			cout<<"YES"<<endl;
		else 
			cout<<"NO"<<endl;
	}
//	while(1);
	return 0;
}


评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值