最短路径算法—Bellman-Ford(poj1860 currency exchange)

Bellman-Ford算法详讲

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。

这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德贝尔曼(Richard Bellman, 动态规划的提出者)和小莱斯特福特(Lester Ford)发明。

适用条件&范围:

单源最短路径(从源点s到其它所有顶点v);

有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);

边权可正可负(如有负权回路输出错误提示);

差分约束系统;

Bellman-Ford算法的流程如下:
给定图G(V, E)(其中VE分别为图G的顶点集与边集),源点s数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n], Distant[s]0

以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)w(u, v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;

为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

BellmanFord算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1n1n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edgeuv)),判断是否存在这样情况:
dv) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
 
之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则 应为无法收敛而导致不能求出最短路径。 

测试代码如下:(下面为有向图的Bellman-Ford算法

#include<iostream>  
#include<cstdio>  
using namespace std;  
  
#define MAX 0x3f3f3f3f  
#define N 1010  
int nodenum, edgenum, original; //点,边,起点  
  
typedef struct Edge //边  
{  
    int u, v;  
    int cost;  
}Edge;  
  
Edge edge[N];  
int dis[N], pre[N];  
  
bool Bellman_Ford()  
{  
    for(int i = 1; i <= nodenum; ++i) //初始化  
        dis[i] = (i == original ? 0 : MAX);  
    for(int i = 1; i <= nodenum - 1; ++i)  
        for(int j = 1; j <= edgenum; ++j)  
            if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)  
            {  
                dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;  
                pre[edge[j].v] = edge[j].u;  
            }  
            bool flag = 1; //判断是否含有负权回路  
            for(int i = 1; i <= edgenum; ++i)  
                if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)  
                {  
                    flag = 0;  
                    break;  
                }  
                return flag;  
}  
  
void print_path(int root) //打印最短路的路径(反向)  
{  
    while(root != pre[root]) //前驱  
    {  
        printf("%d-->", root);  
        root = pre[root];  
    }  
    if(root == pre[root])  
        printf("%d\n", root);  
}  
  
int main()  
{  
    scanf("%d%d%d", &nodenum, &edgenum, &original);  
    pre[original] = original;  
    for(int i = 1; i <= edgenum; ++i)  
    {  
        scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);  
    }  
    if(Bellman_Ford())  
        for(int i = 1; i <= nodenum; ++i) //每个点最短路  
        {  
            printf("%d\n", dis[i]);  
            printf("Path:");  
            print_path(i);  
        }  
    else  
        printf("have negative circle\n");  
    return 0;  
}  

最短路径算法—Bellman-Ford(贝尔曼-福特)算法分析与实现(C/C++)

相关文章:

1.Dijkstra算法:

http://www.wutianqi.com/?p=1890

2.Floyd算法:

http://www.wutianqi.com/?p=1903

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值