最短路径算法—Bellman-Ford(poj1860 currency exchange)

Bellman-Ford算法详讲

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。

这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德贝尔曼(Richard Bellman, 动态规划的提出者)和小莱斯特福特(Lester Ford)发明。

适用条件&范围:

单源最短路径(从源点s到其它所有顶点v);

有向图&无向图(无向图可以看作(u,v),(v,u)同属于边集E的有向图);

边权可正可负(如有负权回路输出错误提示);

差分约束系统;

Bellman-Ford算法的流程如下:
给定图G(V, E)(其中VE分别为图G的顶点集与边集),源点s数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n], Distant[s]0

以下操作循环执行至多n-1次,n为顶点数:
对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)w(u, v)为边e(u,v)的权值;
若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;

为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

BellmanFord算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1n1n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edgeuv)),判断是否存在这样情况:
dv) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
 
之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则 应为无法收敛而导致不能求出最短路径。 

测试代码如下:(下面为有向图的Bellman-Ford算法

#include<iostream>  
#include<cstdio>  
using namespace std;  
  
#define MAX 0x3f3f3f3f  
#define N 1010  
int nodenum, edgenum, original; //点,边,起点  
  
typedef struct Edge //边  
{  
    int u, v;  
    int cost;  
}Edge;  
  
Edge edge[N];  
int dis[N], pre[N];  
  
bool Bellman_Ford()  
{  
    for(int i = 1; i <= nodenum; ++i) //初始化  
        dis[i] = (i == original ? 0 : MAX);  
    for(int i = 1; i <= nodenum - 1; ++i)  
        for(int j = 1; j <= edgenum; ++j)  
            if(dis[edge[j].v] > dis[edge[j].u] + edge[j].cost) //松弛(顺序一定不能反~)  
            {  
                dis[edge[j].v] = dis[edge[j].u] + edge[j].cost;  
                pre[edge[j].v] = edge[j].u;  
            }  
            bool flag = 1; //判断是否含有负权回路  
            for(int i = 1; i <= edgenum; ++i)  
                if(dis[edge[i].v] > dis[edge[i].u] + edge[i].cost)  
                {  
                    flag = 0;  
                    break;  
                }  
                return flag;  
}  
  
void print_path(int root) //打印最短路的路径(反向)  
{  
    while(root != pre[root]) //前驱  
    {  
        printf("%d-->", root);  
        root = pre[root];  
    }  
    if(root == pre[root])  
        printf("%d\n", root);  
}  
  
int main()  
{  
    scanf("%d%d%d", &nodenum, &edgenum, &original);  
    pre[original] = original;  
    for(int i = 1; i <= edgenum; ++i)  
    {  
        scanf("%d%d%d", &edge[i].u, &edge[i].v, &edge[i].cost);  
    }  
    if(Bellman_Ford())  
        for(int i = 1; i <= nodenum; ++i) //每个点最短路  
        {  
            printf("%d\n", dis[i]);  
            printf("Path:");  
            print_path(i);  
        }  
    else  
        printf("have negative circle\n");  
    return 0;  
}  

最短路径算法—Bellman-Ford(贝尔曼-福特)算法分析与实现(C/C++)

相关文章:

1.Dijkstra算法:

http://www.wutianqi.com/?p=1890

2.Floyd算法:

http://www.wutianqi.com/?p=1903

Dijkstra算法是处理单源最短路径的有效算法,但它局限于边的权值非负的情况,若图中出现权值为负的边,Dijkstra算法就会失效,求出的最短路径就可能是错的。这时候,就需要使用其他的算法来求解最短路径,Bellman-Ford算法就是其中最常用的一个。该算法由美国数学家理查德•贝尔曼(Richard Bellman, 动态规划的提出者)和小莱斯特•福特(Lester Ford)发明。Bellman-Ford算法的流程如下:
给定图G(V, E)(其中V、E分别为图G的顶点集与边集),源点s,

  • 数组Distant[i]记录从源点s到顶点i的路径长度,初始化数组Distant[n]为, Distant[s]为0;
  •  
    以下操作循环执行至多n-1次,n为顶点数:
    对于每一条边e(u, v),如果Distant[u] + w(u, v) < Distant[v],则另Distant[v] = Distant[u]+w(u, v)。w(u, v)为边e(u,v)的权值;
    若上述操作没有对Distant进行更新,说明最短路径已经查找完毕,或者部分点不可达,跳出循环。否则执行下次循环;
  • 为了检测图中是否存在负环路,即权值之和小于0的环路。对于每一条边e(u, v),如果存在Distant[u] + w(u, v) < Distant[v]的边,则图中存在负环路,即是说改图无法求出单源最短路径。否则数组Distant[n]中记录的就是源点s到各顶点的最短路径长度。

可知,Bellman-Ford算法寻找单源最短路径的时间复杂度为O(V*E).

首先介绍一下松弛计算。如下图:


 

松弛计算之前,点B的值是8,但是点A的值加上边上的权重2,得到5,比点B的值(8)小,所以,点B的值减小为5。这个过程的意义是,找到了一条通向B点更短的路线,且该路线是先经过点A,然后通过权重为2的边,到达点B。
当然,如果出现一下情况


 

则不会修改点B的值,因为3+4>6。
 
Bellman-Ford算法可以大致分为三个部分
第一,初始化所有点。每一个点保存一个值,表示从原点到达这个点的距离,将原点的值设为0,其它的点的值设为无穷大(表示不可达)。
第二,进行循环,循环下标为从1到n-1(n等于图中点的个数)。在循环内部,遍历所有的边,进行松弛计算。
第三,遍历途中所有的边(edge(u,v)),判断是否存在这样情况:
d(v) > d (u) + w(u,v)
则返回false,表示途中存在从源点可达的权为负的回路。
 
之所以需要第三部分的原因,是因为,如果存在从源点可达的权为负的回路。则 应为无法收敛而导致不能求出最短路径。
考虑如下的图:
 

经过第一次遍历后,点B的值变为5,点C的值变为8,这时,注意权重为-10的边,这条边的存在,导致点A的值变为-2。(8+ -10=-2)
 
 

第二次遍历后,点B的值变为3,点C变为6,点A变为-4。正是因为有一条负边在回路中,导致每次遍历后,各个点的值不断变小。
 
在回过来看一下bellman-ford算法的第三部分,遍历所有边,检查是否存在d(v) > d (u) + w(u,v)。因为第二部分循环的次数是定长的,所以如果存在无法收敛的情况,则肯定能够在第三部分中检查出来。比如
 

此时,点A的值为-2,点B的值为5,边AB的权重为5,5 > -2 + 5. 检查出来这条边没有收敛。
 
所以,Bellman-Ford算法可以解决图中有权为负数的边的单源最短路径问。

以下是Bellman-Ford代码:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/*
* About:  Bellman-Ford算法
* Author: Tanky Woo
* Blog:   www.WuTianqi.com
*/
 
#include <iostream>
using namespace std;
const int maxnum = 100;
const int maxint = 99999;
 
// 边,
typedef struct Edge{
	int u, v;    // 起点,重点
	int weight;  // 边的权值
}Edge;
 
Edge edge[maxnum];     // 保存边的值
int  dist[maxnum];     // 结点到源点最小距离
 
int nodenum, edgenum, source;    // 结点数,边数,源点
 
// 初始化图
void init()
{
	// 输入结点数,边数,源点
	cin >> nodenum >> edgenum >> source;
	for(int i=1; i<=nodenum; ++i)
		dist[i] = maxint;
	dist[source] = 0;
	for(int i=1; i<=edgenum; ++i)
	{
		cin >> edge[i].u >> edge[i].v >> edge[i].weight;
		if(edge[i].u == source)          //注意这里设置初始情况
			dist[edge[i].v] = edge[i].weight;
	}
}
 
// 松弛计算
void relax(int u, int v, int weight)
{
	if(dist[v] > dist[u] + weight)
		dist[v] = dist[u] + weight;
}
 
bool Bellman_Ford()
{
	for(int i=1; i<=nodenum-1; ++i)
		for(int j=1; j<=edgenum; ++j)
			relax(edge[j].u, edge[j].v, edge[j].weight);
	bool flag = 1;
	// 判断是否有负环路
	for(int i=1; i<=edgenum; ++i)
		if(dist[edge[i].v] > dist[edge[i].u] + edge[i].weight)
		{
			flag = 0;
			break;
		}
	return flag;
}
int main()
{
	//freopen("input3.txt", "r", stdin);
    init();
	if(Bellman_Ford())
		for(int i = 1 ;i <= nodenum; i++)
			cout << dist[i] << endl;
	return 0;
}
例题:poj1860

Currency Exchange
Time Limit: 1000MS Memory Limit: 30000K
Total Submissions: 34920 Accepted: 13397

Description

Several currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. 
For example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. 
You surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. 
Nick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. 

Input

The first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103
For each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102
Let us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104

Output

If Nick can increase his wealth, output YES, in other case output NO to the output file.

Sample Input

3 2 1 20.0
1 2 1.00 1.00 1.00 1.00
2 3 1.10 1.00 1.10 1.00

Sample Output

YES

给定N种货币,某些货币之间可以相互兑换,现在给定一些兑换规则,问能否从某一种货币开始兑换,经过一些中间货币之后,最后兑换回这种货币,并且得到的钱比之前的多。

可以把初始兑换的货币看成源点,采用bellman-ford进行求解,若可以实现要求,则说明图中存在可以无限增大的环,这个可以通过bellman-ford算法判断环是否存在求出来,若在求解过程中发现已经兑换回原货币,并且钱比之前多,则可以直接退出算法。由于兑换过程中每种货币值必须为非负的,因此可以把所有初始路径长度设置为0,当前持有的货币设置为v,按照兑换方式对边进行松弛。

#include<iostream>
#include<cstring>
using namespace std;
int n,m,s;
int num;
double v,dis[205];
struct edge
{
	int v1;
	int v2;
	double rat;
	double com;
}edges[410];
bool bellmanford()
{
	for(int i=1;i<n;i++)
	{
		bool flag=false;
		for(int j=0;j<num;j++)
		{
			int v1=edges[j].v1;
			int v2=edges[j].v2;
			if((dis[v1]-edges[j].com)*edges[j].rat>dis[v2])
			{
				dis[v2]=(dis[v1]-edges[j].com)*edges[j].rat;
				flag=true;
			}
		}
		if(flag==false) break;
	}
	for(int j=0;j<num;j++)
	{
		int v1=edges[j].v1;
		int v2=edges[j].v2;
		if((dis[v1]-edges[j].com)*edges[j].rat>dis[v2]) return true;
	}
	return false;
}
int main()
{
	while(cin>>n>>m>>s>>v)
	{
		num=0;
		for(int i=0;i<m;i++)
		{
			cin>>edges[num].v1>>edges[num].v2>>edges[num].rat>>edges[num].com;
			edges[num+1].v1=edges[num].v2; edges[num+1].v2=edges[num].v1;
			num++;
			cin>>edges[num].rat>>edges[num].com;
			num++;
		}
		for(int i=1;i<=n;i++) dis[i]=0;
		dis[s]=v;
		if(bellmanford()) cout<<"YES"<<endl;
		else cout<<"NO"<<endl;
	}
	return 0;
}


阅读更多
换一批

Currency Exchange

11-16

DescriptionnnSeveral currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. nFor example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. nYou surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. nNick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. nInputnnThe first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103. nFor each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102. nLet us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. nOutputnnIf Nick can increase his wealth, output YES, in other case output NO to the output file.nSample Inputnn3 2 1 20.0n1 2 1.00 1.00 1.00 1.00n2 3 1.10 1.00 1.10 1.00nSample OutputnnYES

Currency Exchange(最短路SPFA)

11-22

DescriptionnSeveral currency exchange points are working in our city. Let us suppose that each point specializes in two particular currencies and performs exchange operations only with these currencies. There can be several points specializing in the same pair of currencies. Each point has its own exchange rates, exchange rate of A to B is the quantity of B you get for 1A. Also each exchange point has some commission, the sum you have to pay for your exchange operation. Commission is always collected in source currency. nFor example, if you want to exchange 100 US Dollars into Russian Rubles at the exchange point, where the exchange rate is 29.75, and the commission is 0.39 you will get (100 - 0.39) * 29.75 = 2963.3975RUR. nYou surely know that there are N different currencies you can deal with in our city. Let us assign unique integer number from 1 to N to each currency. Then each exchange point can be described with 6 numbers: integer A and B - numbers of currencies it exchanges, and real RAB, CAB, RBA and CBA - exchange rates and commissions when exchanging A to B and B to A respectively. nNick has some money in currency S and wonders if he can somehow, after some exchange operations, increase his capital. Of course, he wants to have his money in currency S in the end. Help him to answer this difficult question. Nick must always have non-negative sum of money while making his operations. nInputnThe first line of the input contains four numbers: N - the number of currencies, M - the number of exchange points, S - the number of currency Nick has and V - the quantity of currency units he has. The following M lines contain 6 numbers each - the description of the corresponding exchange point - in specified above order. Numbers are separated by one or more spaces. 1<=S<=N<=100, 1<=M<=100, V is real number, 0<=V<=103. nFor each point exchange rates and commissions are real, given with at most two digits after the decimal point, 10-2<=rate<=102, 0<=commission<=102. nLet us call some sequence of the exchange operations simple if no exchange point is used more than once in this sequence. You may assume that ratio of the numeric values of the sums at the end and at the beginning of any simple sequence of the exchange operations will be less than 104. nOutputnIf Nick can increase his wealth, output YES, in other case output NO to the output file.nSample Inputn3 2 1 20.0n1 2 1.00 1.00 1.00 1.00n2 3 1.10 1.00 1.10 1.00nSample OutputnYES

没有更多推荐了,返回首页