使用 Python 和机器学习检测假新闻

一、前言

该文章仅作为个人学习使用

项目源代码:使用 Python 和机器学习检测假新闻 - DataFlair (data-flair.training)

数据集:news.zip - Google 云端硬盘

二、理论知识

1、什么是假新闻?

假新闻是指故意编造、歪曲事实、不实信息或误导性内容的新闻报道。这些新闻通常旨在误导读者、操纵舆论、获得点击量或推动特定议程。假新闻可能会混淆事实和观点,制造虚假危机,破坏公信力,甚至对社会造成负面影响。因此,识别并避免传播假新闻对于确保信息的准确性和保护社会公共利益至关重要。

2、什么是 TfidfVectorizer?

TfidfVectorizer 是一种常用于文本特征提取和向量化的工具。它是指 “Term Frequency-Inverse Document Frequency Vectorizer” 的缩写。

具体说,TfidfVectorizer 主要用于将文本数据转换成文档-词项矩阵,其中每个文档由词项向量表示,向量中的每个元素是对应词项的 TF-IDF 权重。这些权重反映了词项在文档集合中的重要性,考虑到了词项在文档中的频率以及在整个文档集合中的频率。这种方法有助于突出在单个文档中频繁出现但在整个文档集合中罕见的词项,从而提供更好的文本表示。

总结说,TfidfVectorizer 通过计算每个词项的 TF-IDF 权重,将文本数据转换为可供机器学习算法处理的数值特征表示,是文本挖掘自然语言处理中常用的工具之一。

TF(术语频率):一个单词在文档中出现的次数就是它的术语频率。值越高意味着某个术语比其他术语出现得更频繁,因此,当该术语是搜索词的一部分时,该文档是很好的匹配项。

TF(术语频率)是指在文本挖掘和信息检索中用于衡量一个词项在文档中出现频率的指标。具体而言,TF 表示某个词项在文档中出现的次数,它是一个词项频率的度量。TF 的计算公式如下:

[ \text{TF}(t, d) = \frac{\text{词项 } t \text{ 在文档 } d \text{ 中出现的次数}}{\text{文档 } d \text{ 的总词项数}} ]

其中,( t ) 是要计算的词项(术语),( d ) 是文档。TF 反映了词项在单个文档中的重要程度,通常用于衡量一个词项对于文档内容的贡献度。

在文本挖掘中,TF 被用作特征表示的一部分,结合其他信息(如 IDF,逆文档频率)可以计算 TF-IDF 权重,用于更准确地表示和分析文本数据。

IDF(反转文档频率):在文档中出现多次的单词,以及在许多其他文档中多次出现的单词,可能是无关紧要的。IDF 是衡量一个术语在整个语料库中的重要性的指标。

IDF(Inverse Document Frequency,反转文档频率)是用于衡量一个词项在文档集合中重要性的指标,通常与TF(术语频率)一起使用来计算TF-IDF(术语频率-反转文档频率)权重。

具体而言,IDF 指标反映了一个词项在整个文档集合中的普遍重要程度。它的计算公式如下所示:

[ \text{IDF}(t) = \log \left( \frac{N}{df(t)} \right) ]

其中,

  • ( N ) 是文档集合中总文档数;
  • ( df(t) ) 是包含词项 ( t ) 的文档数目。

IDF 的核心思想是,如果一个词项在很多文档中出现(即 ( df(t) ) 较大),那么它的IDF值将较小,表明该词项对文档内容的区分能力较弱。相反,如果一个词项在少数文档中出现(即 ( df(t) ) 较小),那么它的IDF值将较大,表明该词项在文档集合中具有较高的区分能力和重要性。

在计算TF-IDF时,TF和IDF的乘积可以有效地减少常见词项(如“的”、“是”等)的权重,同时增强在单个文档中频繁出现但在整个文档集合中较为罕见的词项的权重,从而更好地表征文本内容的关键特征。

总结来说,IDF是一种用于衡量词项重要性的方法,常用于文本挖掘、信息检索和自然语言处理中的特征表示和权重计算。

TfidfVectorizer 将原始文档集合转换为 TF-IDF 特征矩阵。

3、什么是 PassiveAggressiveClassifier?

被动攻击算法是在线学习算法。这种算法对于正确的分类结果保持被动,并在计算错误、更新和调整时变得积极。与大多数其他算法不同,它不会收敛。其目的是进行更新以纠正损失,使权重向量的范数变化很小。

PassiveAggressiveClassifier 是一种机器学习算法,属于在线学习(online learning)的一种形式。它主要用于处理大规模数据流或在线学习环境下的分类问题

具体来说,Passive Aggressive Classifier(PAC)的名称源自其处理错误的方式。在训练过程中,当模型预测错误时,PAC会“ passively ”接受新的观察结果,然后“ aggressively ”调整模型以适应这些新的观察结果,使其能够正确分类当前的实例。这种特性使得PAC在处理动态数据流时特别有效,因为它可以快速适应数据的变化。

Passive Aggressive Classifier可以用于二分类多分类问题,并且在处理大规模数据集时通常表现出色。它的一大优势是不需要大量存储空间来保存训练数据,因为它可以通过增量学习的方式逐步更新模型,而不是在每次迭代中都保留完整的数据集。

总结来说,Passive Aggressive Classifier是一种适用于在线学习场景的分类算法,特别适合于需要处理大数据流并实时调整模型的应用环境。

三、使用 Python 检测假新闻

建立一个模型,准确地将一条新闻分类为真实或虚假。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值