Python虚假新闻检测识别

程序示例精选
Python虚假新闻检测识别
如需安装运行环境或远程调试,见文章底部个人QQ名片,由专业技术人员远程协助!

前言

这篇博客针对《Python虚假新闻检测识别》编写代码,代码整洁,规则,易读。 学习与应用推荐首选。


文章目录

一、所需工具软件
二、使用步骤
       1. 主要代码
       2. 运行结果
三、在线协助

一、所需工具软件

       1. Python
       2. Pycharm

二、使用步骤

代码如下(示例):

# -*- coding: utf-8 -*-

import numpy as np
import pandas as pd
from sklearn.feature_extraction.text import TfidfVectorizer
def preprocess_text(text, vectorizer, svd, lda, stop_word):
    """
    对输入的新闻文本进行预处理:
    1. 分词并去除停用词
    2. 使用 TF-IDF 特征提取
    3. 使用 SVD 和 LDA 降维
    """
    # 中文分词,去除停用词
    words = jieba.cut(text)
    s = ''
    for word in words:
        if word not in stop_word:
            if s != '':
                s = s + ' ' + word
            else:
                s = word
    
def load_stopwords(filepath):
    """
    加载停用词表
    """
    with open(filepath, 'r', encoding='utf-8', errors='ignore') as f:
        stop_words = f.read().splitlines()
    return stop_words

def main():
    # 加载停用词
    stop_word = load_stopwords('stop_word.txt')

    # 加载训练时使用的 TF-IDF 向量化器、SVD 和 LDA 模型
    vectorizer = joblib.load('tfidf_vectorizer.joblib')
    svd = joblib.load('svd_model.joblib')
    lda = joblib.load('lda_model.joblib')

    # 加载训练好的 RidgeClassifier 模型
    clf = joblib.load('ridge_classifier_model.joblib')

    # 输入一条新闻文本
    #news_text = "她用一招,吓退了企图不轨的滴滴司机"  #真新闻
    news_text = "刘翔用1秒钟跑完100米"  #假新闻

    # 置信度阈值(可根据需求调整)
    confidence_threshold = 0.3

    # 预处理输入的新闻文本
    features = preprocess_text(news_text, vectorizer, svd, lda, stop_word)

    # 使用模型进行预测
    prediction = clf.predict(features)

    # 获取决策函数的输出值
    decision_scores = clf.decision_function(features)

    # 将决策函数的输出值转换为概率值(简单的 sigmoid 函数)
    probabilities = 1 / (1 + np.exp(-decision_scores))
    # 根据置信度阈值判断预测结果
    if prob_class_1 >= confidence_threshold:
        final_prediction = 1
        print(f"预测类别:{final_prediction} 假新闻(高置信度)")
    elif prob_class_1 <= (1 - confidence_threshold):
        final_prediction = 0
        print(f"预测类别:{final_prediction} 真新闻(高置信度)")
    else:
        final_prediction = "未知"
        print("预测类别:未知 (置信度过低)")

    # 输出置信度
    print(f"置信度(属于类别 1 的概率):{prob_class_1:.4f}")

if __name__ == '__main__':
    main()

运行结果
运行结果

三、在线协助:

如需安装运行环境或远程调试,见文章底部个人 QQ 名片,由专业技术人员远程协助!

1)远程安装运行环境,代码调试
2)Visual Studio, Qt, C++, Python编程语言入门指导
3)界面美化
4)软件制作
5)云服务器申请
6)网站制作

当前文章连接:https://blog.csdn.net/alicema1111/article/details/132666851
个人博客主页https://blog.csdn.net/alicema1111?type=blog
博主所有文章点这里:https://blog.csdn.net/alicema1111?type=blog

博主推荐:
Python人脸识别考勤打卡系统:
https://blog.csdn.net/alicema1111/article/details/133434445
Python果树水果识别https://blog.csdn.net/alicema1111/article/details/130862842
Python+Yolov8+Deepsort入口人流量统计:https://blog.csdn.net/alicema1111/article/details/130454430
Python+Qt人脸识别门禁管理系统:https://blog.csdn.net/alicema1111/article/details/130353433
Python+Qt指纹录入识别考勤系统:https://blog.csdn.net/alicema1111/article/details/129338432
Python Yolov5火焰烟雾识别源码分享:https://blog.csdn.net/alicema1111/article/details/128420453
Python+Yolov8路面桥梁墙体裂缝识别:https://blog.csdn.net/alicema1111/article/details/133434445
Python+Yolov5道路障碍物识别:https://blog.csdn.net/alicema1111/article/details/129589741
Python+Yolov5跌倒检测 摔倒检测 人物目标行为 人体特征识别:https://blog.csdn.net/alicema1111/article/details/129272048

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

荷塘月色2

您的鼓励将是我创作最大的动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值