from torch import nn
import torch
from torch.nn import functional as F
class focal_loss(nn.Module):
def __init__(self, alpha=0.25, gamma=2, num_classes=5, size_average=True):
super(focal_loss, self).__init__()
self.size_average = size_average
if isinstance(alpha, (float, int)): #仅仅设置第一类别的权重
self.alpha = torch.zeros(num_classes)
self.alpha[0] += alpha
self.alpha[1:] += (1 - alpha)
if isinstance(alpha, list): #全部权重自己设置
self.alpha = torch.Tensor(alpha)
self.gamma = gamma
def forward(self, inputs, targets):
alpha = self.alpha
print('aaaaaaa',alpha)
N = inputs.size(0)
C = inputs.size(1)
P = F.softmax(inputs,dim=1)
print('ppppppppppppppppppppp', P)
# ---------one hot start--------------#
class_mask = inputs.data.new(N, C).fill_(0) # 生成和input一样shape的tensor
print('依照input shape制作:class_mask\n', class_mask)
class_mask = class_mask.requires_grad_() # 需要更新, 所以加入梯度计算
ids = targets.view(-1, 1) # 取得目标的索引
print('取得targets的索引\n', ids)
class_mask.data.scatter_(1, ids.data, 1.) # 利用scatter将索引丢给mask
print('targets的one_hot形式\n', class_mask) # one-hot target生成
# ---------one hot end-------------------#
probs = (P * class_mask).sum(1).view(-1, 1)
print('留下targets的概率(1的部分),0的部分消除\n', probs)
# 将softmax * one_hot 格式,0的部分被消除 留下1的概率, shape = (5, 1), 5就是每个target的概率
log_p = probs.log()
print('取得对数\n', log_p)
# 取得对数
loss = torch.pow((1 - probs), self.gamma) * log_p
batch_loss = -alpha *loss.t() # 對應下面公式
print('每一个batch的loss\n', batch_loss)
# batch_loss就是取每一个batch的loss值
# 最终将每一个batch的loss加总后平均
if self.size_average:
loss = batch_loss.mean()
else:
loss = batch_loss.sum()
print('loss值为\n', loss)
return loss
torch.manual_seed(50) #随机种子确保每次input tensor值是一样的
input = torch.randn(5, 5, dtype=torch.float32, requires_grad=True)
print('input值为\n', input)
targets = torch.randint(5, (5, ))
print('targets值为\n', targets)
criterion = focal_loss()
loss = criterion(input, targets)
loss.backward()
focal loss的手动实现
最新推荐文章于 2025-02-22 11:38:02 发布