于敦德:途牛五大战略纵深不惧同质化竞争



       于敦德说,途牛已经在目的地、出发地、产品系列、客户和品牌五个领域建立起了纵深壁垒,不担心任何局部竞争,将坚决把局部同质化战争打到底。

一个行业的两种公司

       包括旅游在内的很多行业通常都有两种公司:一种公司引领行业从小做大,一种公司把行业从大做小;一种公司靠创新取胜,一种公司靠模仿取胜;一种公司冲锋,为行业不断开拓新的空间,一种公司在低端、局部市场同质化竞争,不断压缩行业空间;一种公司靠差异化的竞争取胜,一种公司靠同质化的竞争取胜。

       两者竞争层次不同,对消费者都有益,是差异化的竞争,前者通常是行业领导者,后一种通常是追赶者。领导者通常因为做了创新,撕扯开了行业空间,在创新所带来的新空间上面获得较高溢价利润。追赶者通常不创新,没有创新的成本,更加有动力来发起同质化竞争;但也恰恰因为没有创新,无法获得中高端客户的认同,对行业进步价值较低,只能靠压低成本来获取微薄利润。

      作为行业领导者,应该不断冲锋同时果断自宫。一方面不断冲锋、不断创新来增加纵深,一方面果断自宫,该舍弃的局部利益必须舍弃,这些利益已经进入衰退期,与其在上面不断纠结,不如大大方方的让利消费者,应对追赶者在局部、低端的同质化竞争。通过不断的冲锋与自宫,始终保持创新与活力,纵深与壁垒不断加强,竞争力不断提升。冲锋的速度大于自宫的速度,就所向披靡,反之就会吃老本。

      作为行业领导者,更重要的工作是冲锋,为整个行业撕扯出更大的空间来,把整个蛋糕做大。下决心自宫不易,不断冲锋更难:不被自宫竞争蒙蔽双眼难能可贵,眼光始终着眼行业长远发展、用户长远需求难能可贵。如果只自宫而不冲锋,伴随着行业成熟度越来越高、纵深优势越来越浅,局部、低端竞争逐步扩展到整体业务会很痛苦,行业也可能陷入低水平同质化竞争的恶性循环,进入下降通道。

途牛已经建立战略纵深

途牛已经在以下五个领域建立起了纵深壁垒,不担心任何局部竞争,将坚决把局部同质化战争打到底。

1、目的地。排名第一的欧洲和排名第二的马代都是出境长线目的地,中高端目的地是纵深。

2、出发地。自Q2的15个区域服务中心,到目前的60个,到明年的超100个,二三线城市是广阔的纵深。

3、产品系列。中高端的牛人专线产品系列,未来还会有更高端的产品系列品牌,中高端的产品系列是纵深。

4、客户。中高端VIP客户有着理性的消费理念,青睐中高端产品,中高端的客户是纵深。

5、品牌。途牛是定位清晰的专注休闲旅游的大众消费品牌,而非无品牌的低端恶性竞争挑起者形象,清晰可信的品牌是纵深。

其中一些纵深是以前就有的,一些纵深是今年重点建立并加强的,这些都是我们长期投资的重要组成部分。我们没有为了短期业绩只做眼前的投入,因为我们相信只能着眼长远,通过长期投资加强纵深,才有可有持续领导行业发展。

途牛继续冲锋


        所有的这些纵深的建立,能够支撑我们在局部市场、低端市场随时应对可能的挑衅,并彻底打倒这些挑衅,同时不断扩大纵深竞争优势。在特卖业务上面途牛已经证明有能力在任何一个局部市场快速集中压倒性兵力、占领第一位置。局部战场同质化竞争很简单,坚决自宫,决战到底,打出水平。

真正决定竞争胜负的,是差异化的纵深战场,我们将在纵深领域继续冲锋20年,加强在客户服务与品牌、区域覆盖、中高端产品线的纵深优势,开拓金融业务,为行业撕扯出一片更大的天空,引领在线休闲旅游行业继续飞奔!

1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。 1、资源项目源码均已通过严格测试验证,保证能够正常运行; 2、项目问题、技术讨论,可以给博主私信或留言,博主看到后会第一时间与您进行沟通; 3、本项目比较适合计算机领域相关的毕业设计课题、课程作业等使用,尤其对于人工智能、计算机科学与技术等相关专业,更为适合; 4、下载使用后,可先查看README.md或论文文件(如有),本项目仅用作交流学习参考,请切勿用于商业用途。 5、资源来自互联网采集,如有侵权,私聊博主删除。 6、可私信博主看论文后选择购买源代码。
应用背景为变电站电力巡检,基于YOLO v4算法模型对常见电力巡检目标进行检测,并充分利用Ascend310提供的DVPP等硬件支持能力来完成流媒体的传输、处理等任务,并对系统性能做出一定的优化。.zip深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
深度学习是机器学习的一个子领域,它基于人工神经网络的研究,特别是利用多层次的神经网络来进行学习和模式识别。深度学习模型能够学习数据的高层次特征,这些特征对于图像和语音识别、自然语言处理、医学图像分析等应用至关重要。以下是深度学习的一些关键概念和组成部分: 1. **神经网络(Neural Networks)**:深度学习的基础是人工神经网络,它是由多个层组成的网络结构,包括输入层、隐藏层和输出层。每个层由多个神经元组成,神经元之间通过权重连接。 2. **前馈神经网络(Feedforward Neural Networks)**:这是最常见的神经网络类型,信息从输入层流向隐藏层,最终到达输出层。 3. **卷积神经网络(Convolutional Neural Networks, CNNs)**:这种网络特别适合处理具有网格结构的数据,如图像。它们使用卷积层来提取图像的特征。 4. **循环神经网络(Recurrent Neural Networks, RNNs)**:这种网络能够处理序列数据,如时间序列或自然语言,因为它们具有记忆功能,能够捕捉数据中的时间依赖性。 5. **长短期记忆网络(Long Short-Term Memory, LSTM)**:LSTM 是一种特殊的 RNN,它能够学习长期依赖关系,非常适合复杂的序列预测任务。 6. **生成对抗网络(Generative Adversarial Networks, GANs)**:由两个网络组成,一个生成器和一个判别器,它们相互竞争,生成器生成数据,判别器评估数据的真实性。 7. **深度学习框架**:如 TensorFlow、Keras、PyTorch 等,这些框架提供了构建、训练和部署深度学习模型的工具和库。 8. **激活函数(Activation Functions)**:如 ReLU、Sigmoid、Tanh 等,它们在神经网络中用于添加非线性,使得网络能够学习复杂的函数。 9. **损失函数(Loss Functions)**:用于评估模型的预测与真实值之间的差异,常见的损失函数包括均方误差(MSE)、交叉熵(Cross-Entropy)等。 10. **优化算法(Optimization Algorithms)**:如梯度下降(Gradient Descent)、随机梯度下降(SGD)、Adam 等,用于更新网络权重,以最小化损失函数。 11. **正则化(Regularization)**:技术如 Dropout、L1/L2 正则化等,用于防止模型过拟合。 12. **迁移学习(Transfer Learning)**:利用在一个任务上训练好的模型来提高另一个相关任务的性能。 深度学习在许多领域都取得了显著的成就,但它也面临着一些挑战,如对大量数据的依赖、模型的解释性差、计算资源消耗大等。研究人员正在不断探索新的方法来解决这些问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值