黎曼zeta函数的快捷c++实现

const double bn[130]={
   0,0.16666666666666665741,-0.033333333333333332871,0.023809523809523808202,-0.033333333333333332871,0.075757575757575759678,-0.25311355311355310249,1.1666666666666667407,-7.0921568627450977118,54.971177944862155584,-529.12424242424242493,6192.1231884057970092,-86580.253113553117146,1425517.1666666667443,-27298231.067816093564,601580873.90064239502,-15116315767.092157364,429614643061.16668701,-13711655205088.332031,488332318973593.1875,-19296579341940068.,841693047573682560.,-40338071854059454464.,2.1150748638081992622e+021,-1.2086626522296526202e+023,7.500866746076964166e+024,-5.0387781014810688499e+026,3.6528776484818122276e+028,-2.8498769302450882361e+030,2.3865427499683627448e+032,-2.1399949257225334859e+034,2.050097572347809739e+036,-2.0938005911346379301e+038,2.2752696488463514863e+040,-2.6257710286239577207e+042,3.2125082102718031743e+044,-4.1598278166794711978e+046,5.6920695482035283174e+048,-8.2183629419784577665e+050,1.2502904327166994004e+053,-2.0015583233248370052e+055,3.3674982915364375556e+057,-5.9470970503135450205e+059,1.1011910323627976762e+062,-2.1355259545253502079e+064,4.3328896986641193847e+066,-9.1885528241669331811e+068,2.0346896776329073708e+071,-4.7003833958035730158e+073,1.1318043445484249411e+076,-2.8382249570693707354e+078,7.4064248979678852935e+080,-2.0096454802756605262e+083,5.6657170050805942089e+085,-1.6584511154136215904e+088,5.036885995049237839e+090,-1.586146823765818563e+093,5.1756743617545625189e+095,-1.7488921840217115846e+098,6.1160519994952182359e+100,-2.2122776912707833194e+103,8.2722776798770968766e+105,-3.1958925111415708478e+108,1.275008222338779314e+111,-5.2500923086774131347e+113,2.2301817894241626634e+116,-9.7684521930955207422e+118,4.4098361978452949821e+121,-2.0508570886464088957e+124,9.8214433279791276581e+126,-4.8412600798208880569e+129,2.455308880148098232e+132,-1.2806926804084747554e+135,6.8676167104668579435e+137,-3.7846468581969105852e+140,2.1426101250665290651e+143,-1.2456727137183695399e+146,7.4345787551000155753e+148,-4.5535795304641703729e+151,2.861211281685887046e+154,-1.8437723552033869952e+157,1.2181154536221046544e+160,-8.2482187185314121679e+162,5.7225877937832942168e+165,-4.066853052505910459e+168,2.9596092064642052191e+171,-2.2049522565189457143e+174,1.6812597072889599375e+177,-1.3116736213556958091e+180,1.0467894009478038522e+183,-8.5432893578833710248e+185,7.1287821322486546855e+188,-6.0802931455535904967e+191,5.2996776424849921167e+194,-4.719425916874586047e+197,4.2928413791402982607e+200,-3.9876744968232205368e+203,3.7819780419358879766e+206,-3.6614233683681191899e+209,3.6176090272372859917e+212,-3.6470772645191356311e+215,3.7508755436454406323e+218,-3.934586729643903006e+221,
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
首先,我们需要了解黎曼 zeta 函数的定义: $$\zeta(s)=\sum_{n=1}^{\infty}\frac{1}{n^s}$$ 其中,$s$ 是一个复数。当 $s$ 的实部大于 $1$ 时,黎曼 zeta 函数是收敛的。当 $s=1$ 时,黎曼 zeta 函数的值为无穷大。 黎曼 zeta 函数的一个重要性质是,它可以被解析延拓到整个复平面,除了 $s=1$ 这个点存在一个极点。具体来说,黎曼 zeta 函数可以被写成以下形式: $$\zeta(s)=\frac{1}{\Gamma(s)}\int_{0}^{\infty}\frac{x^{s-1}}{e^x-1}\mathrm{d}x$$ 其中,$\Gamma(s)$ 是欧拉伽玛函数。 接下来,我们来证明素数的频率与黎曼 zeta 函数的零点相关。为此,我们需要引入另一个函数 $\psi(x)$,它被定义为: $$\psi(x)=\sum_{n\leq x}\Lambda(n)$$ 其中,$\Lambda(n)$ 表示 n 的 von Mangoldt 函数,即: $$\Lambda(n)=\begin{cases}\ln p, & \text{if }n=p^k\text{ for some prime }p\text{ and integer }k\geq 1\\0, & \text{otherwise}\end{cases}$$ 通过分部积分,可以得到: $$\psi(x)=x-\sum_{\rho}\frac{x^{\rho}}{\rho}-\ln 2\pi-\frac{1}{2}\ln(1-x^{-2})$$ 其中,$\rho$ 是黎曼 zeta 函数的零点。 接下来,我们需要证明的是,当 $x$ 趋近于正无穷时,$\psi(x)$ 与素数的个数 $\pi(x)$ 之间的关系是: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 其中,“$\sim$”表示“渐进等于”。 这个结论可以通过黎曼-底格尔公式得到。黎曼-底格尔公式是一个重要的数学公式,它描述了黎曼 zeta 函数与素数分布之间的关系。具体来说,黎曼-底格尔公式可以写成以下形式: $$\pi(x)=\text{li}(x)+O\left(\frac{x}{\ln x}\right)$$ 其中,$\text{li}(x)$ 是对数积分函数,$O\left(\frac{x}{\ln x}\right)$ 是渐进符号,表示当 $x$ 趋近于正无穷时,剩余的误差可以被一个与 $\frac{x}{\ln x}$ 同阶的函数所控制。 我们可以对黎曼-底格尔公式进行微调,得到: $$\psi(x)=\text{li}(x)-\sum_{p}\text{li}(x^{1/p})-\ln 2-\frac{1}{2}\ln(1-x^{-2})+O\left(\frac{x}{\ln x}\right)$$ 其中,$p$ 是素数。这个公式的证明可以参考数论中的相关文献。 接下来,我们证明当 $x$ 趋近于正无穷时,$\psi(x)$ 与素数的个数 $\pi(x)$ 之间的关系是: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 我们可以先证明当 $x$ 趋近于正无穷时,$\text{li}(x)$ 与 $x$ 的差距是比较小的。具体来说,根据定义,$\text{li}(x)$ 可以写成以下积分的形式: $$\text{li}(x)=\int_{2}^{x}\frac{\mathrm{d}t}{\ln t}$$ 通过分部积分,可以得到: $$\text{li}(x)=\frac{x}{\ln x}-\int_{2}^{x}\frac{\mathrm{d}t}{\ln^2 t}+\frac{2}{\ln 2}$$ 因此,当 $x$ 趋近于正无穷时,$\text{li}(x)$ 与 $x$ 的差距是 $O\left(\frac{x}{\ln x}\right)$ 级别的。 接下来,我们证明当 $x$ 趋近于正无穷时,$\sum_{p}\text{li}(x^{1/p})$ 与 $x$ 的差距也是比较小的。具体来说,我们可以写出: $$\sum_{p}\text{li}(x^{1/p})\leq\sum_{n}\text{li}(x^{1/n})=\sum_{n}\int_{2}^{x^{1/n}}\frac{\mathrm{d}t}{\ln t}=\sum_{n}\frac{x^{1/n}}{n\ln x}=O\left(\frac{x}{\ln x}\right)$$ 其中,第一个等式是因为 $\text{li}(x^{1/n})$ 可以看成是 $\text{li}(y)$,其中 $y$ 是满足 $y^n=x$ 的最小整数;第二个等式是通过换元积分得到的;第三个等式是通过级数展开得到的。 因此,当 $x$ 趋近于正无穷时,$\psi(x)$ 与 $x$ 的差距是 $O\left(\frac{x}{\ln x}\right)$ 级别的。这意味着,当 $x$ 趋近于正无穷时,$\psi(x)$ 与 $x$ 是同阶的,即: $$\psi(x)\sim x\ \text{as}\ x\rightarrow\infty$$ 因此,我们证明了素数的频率与黎曼 zeta 函数的零点分布相关的结论。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值